Learning the properties of a water-lean amine solvent from carbon capture pilot experiments

Jeongnam Kim, Jonggeol Na, Kyeongsu Kim, Ji Hyun Bak, Hyunjoo Lee, Ung Lee

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Process design and optimization are challenging task not only because of the model formulation and expensive computation but also numbers of physicochemical parameters deducing from experimental data. Numbers of process design employing novel solvents and producing uncommon chemical, therefore, have been suffered from unknown physicochemical properties and resulting process models inherently has high degree of uncertainty. In this work, we developed and assessed a machine learning methodology to estimate parameter uncertainties, specify solvent physicochemical properties, and evaluate the reaction kinetics of a water-lean amine solvent for a CO2 capture process. We integrated two fundamental methodologies to decrease the experimental and computational costs. Gaussian process Bayesian optimization was applied to the pilot-scale tests; in addition, a rigorous process model employing a newly proposed hybrid Bayesian inference was used, which reduces the computational time of sampling. The assessment highlights the Gibbs free energy of the particular electrolyte as the most sensitive parameter to match the process responses. Both water and water-lean amine solvent, K2Sol, were observed to act as dominant bases in the absorption kinetics. Furthermore, most output responses of the process model were located in the 95% confidence interval. Our methodology efficiently incorporates process optimization from past experiments and simultaneously identifies solvent characteristics to build rigorous process models that automatically consider uncertainties.

Original languageEnglish
Article number116213
JournalApplied Energy
StatePublished - 1 Feb 2021

Bibliographical note

Funding Information:
The authors acknowledge the financial support from the Korea Institute of Science and Technology (KIST), South Korea institutional program. This work was supported by the National Research Foundation of Korea (NRF), South Korea grant funded by the Korea government (MSIT) ( NRF-2020R1F1A1066080 , NRF-2020M3H7A1098271 ).

Publisher Copyright:
© 2020 Elsevier Ltd


  • Bayesian inference
  • Carbon capture
  • Machine learning
  • Pilot plant
  • Water-lean amine solvent


Dive into the research topics of 'Learning the properties of a water-lean amine solvent from carbon capture pilot experiments'. Together they form a unique fingerprint.

Cite this