TY - JOUR
T1 - Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway
AU - Choi, Ji Hyun
AU - Moon, Chang Mo
AU - Shin, Tae Seop
AU - Kim, Eun Kyoung
AU - McDowell, Andrea
AU - Jo, Min Kyung
AU - Joo, Yang Hee
AU - Kim, Seong Eun
AU - Jung, Hye Kyung
AU - Shim, Ki Nam
AU - Jung, Sung Ae
AU - Kim, Yoon Keun
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Lactobacillus paracasei is a major probiotic and is well known for its anti-inflammatory properties. Thus, we investigated the effects of L. paracasei-derived extracellular vesicles (LpEVs) on LPS-induced inflammation in HT29 human colorectal cancer cells and dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice. ER stress inhibitors (salubrinal or 4-PBA) or CHOP siRNA were utilized to investigate the relationship between LpEV-induced endoplasmic reticulum (ER) stress and the inhibitory effect of LpEVs against LPS-induced inflammation. DSS (2%) was administered to male C57BL/6 mice to induce inflammatory bowel disease, and disease activity was measured by determining colon length, disease activity index, and survival ratio. In in vitro experiments, LpEVs reduced the expression of the LPS-induced pro-inflammatory cytokines IL-1α, IL-1β, IL-2, and TNFα and increased the expression of the anti-inflammatory cytokines IL-10 and TGFβ. LpEVs reduced LPS-induced inflammation in HT29 cells and decreased the activation of inflammation-associated proteins, such as COX-2, iNOS and NFκB, as well as nitric oxide. In in vivo mouse experiments, the oral administration of LpEVs also protected against DSS-induced colitis by reducing weight loss, maintaining colon length, and decreasing the disease activity index (DAI). In addition, LpEVs induced the expression of endoplasmic reticulum (ER) stress-associated proteins, while the inhibition of these proteins blocked the anti-inflammatory effects of LpEVs in LPS-treated HT29 cells, restoring the pro-inflammatory effects of LPS. This study found that LpEVs attenuate LPS-induced inflammation in the intestine through ER stress activation. Our results suggest that LpEVs have a significant effect in maintaining colorectal homeostasis in inflammation-mediated pathogenesis.
AB - Lactobacillus paracasei is a major probiotic and is well known for its anti-inflammatory properties. Thus, we investigated the effects of L. paracasei-derived extracellular vesicles (LpEVs) on LPS-induced inflammation in HT29 human colorectal cancer cells and dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice. ER stress inhibitors (salubrinal or 4-PBA) or CHOP siRNA were utilized to investigate the relationship between LpEV-induced endoplasmic reticulum (ER) stress and the inhibitory effect of LpEVs against LPS-induced inflammation. DSS (2%) was administered to male C57BL/6 mice to induce inflammatory bowel disease, and disease activity was measured by determining colon length, disease activity index, and survival ratio. In in vitro experiments, LpEVs reduced the expression of the LPS-induced pro-inflammatory cytokines IL-1α, IL-1β, IL-2, and TNFα and increased the expression of the anti-inflammatory cytokines IL-10 and TGFβ. LpEVs reduced LPS-induced inflammation in HT29 cells and decreased the activation of inflammation-associated proteins, such as COX-2, iNOS and NFκB, as well as nitric oxide. In in vivo mouse experiments, the oral administration of LpEVs also protected against DSS-induced colitis by reducing weight loss, maintaining colon length, and decreasing the disease activity index (DAI). In addition, LpEVs induced the expression of endoplasmic reticulum (ER) stress-associated proteins, while the inhibition of these proteins blocked the anti-inflammatory effects of LpEVs in LPS-treated HT29 cells, restoring the pro-inflammatory effects of LPS. This study found that LpEVs attenuate LPS-induced inflammation in the intestine through ER stress activation. Our results suggest that LpEVs have a significant effect in maintaining colorectal homeostasis in inflammation-mediated pathogenesis.
UR - http://www.scopus.com/inward/record.url?scp=85081266020&partnerID=8YFLogxK
U2 - 10.1038/s12276-019-0359-3
DO - 10.1038/s12276-019-0359-3
M3 - Article
C2 - 32123288
AN - SCOPUS:85081266020
SN - 1226-3613
VL - 52
SP - 423
EP - 437
JO - Experimental and Molecular Medicine
JF - Experimental and Molecular Medicine
IS - 3
ER -