TY - JOUR
T1 - Kesterite thin-film solar cells
T2 - Advances in materials modelling of Cu 2 ZnSnS 4
AU - Walsh, Aron
AU - Chen, Shiyou
AU - Wei, Su Huai
AU - Gong, Xin Gao
PY - 2012/4
Y1 - 2012/4
N2 - Quaternary semiconducting materials based on the kesterite (A 2 BCX 4) mineral structure are the most promising candidates to overtake the current generation of light-absorbing materials for thin-film solar cells. Cu 2 ZnSnS 4 (CZTS), Cu 2 ZnSnSe 4 (CZTSe) and their alloy Cu 2 ZnSn(Se,S) 4 consist of abundant, low-cost and non-toxic elements, unlike current CdTe and Cu(In,Ga)Se 2 based technologies. Zinc-blende related structures are formed by quaternary compounds, but the complexity associated with the multi-component system introduces difficulties in material growth, characterization, and application. First-principles electronic structure simulations, performed over the past five years, that address the structural, electronic, and defect properties of this family of compounds are reviewed. Initial predictions of the bandgaps and crystal structures have recently been verified experimentally. The calculations highlight the role of atomic disorder on the cation sub-lattice, as well as phase separation of Cu 2 ZnSnS 4 into ZnS and CuSnS 3, on the material performance for light-to-electricity conversion in photovoltaic devices. Finally, the current grand challenges for materials modeling of thin-film solar cells are highlighted.
AB - Quaternary semiconducting materials based on the kesterite (A 2 BCX 4) mineral structure are the most promising candidates to overtake the current generation of light-absorbing materials for thin-film solar cells. Cu 2 ZnSnS 4 (CZTS), Cu 2 ZnSnSe 4 (CZTSe) and their alloy Cu 2 ZnSn(Se,S) 4 consist of abundant, low-cost and non-toxic elements, unlike current CdTe and Cu(In,Ga)Se 2 based technologies. Zinc-blende related structures are formed by quaternary compounds, but the complexity associated with the multi-component system introduces difficulties in material growth, characterization, and application. First-principles electronic structure simulations, performed over the past five years, that address the structural, electronic, and defect properties of this family of compounds are reviewed. Initial predictions of the bandgaps and crystal structures have recently been verified experimentally. The calculations highlight the role of atomic disorder on the cation sub-lattice, as well as phase separation of Cu 2 ZnSnS 4 into ZnS and CuSnS 3, on the material performance for light-to-electricity conversion in photovoltaic devices. Finally, the current grand challenges for materials modeling of thin-film solar cells are highlighted.
UR - http://www.scopus.com/inward/record.url?scp=84863324661&partnerID=8YFLogxK
U2 - 10.1002/aenm.201100630
DO - 10.1002/aenm.201100630
M3 - Article
AN - SCOPUS:84863324661
SN - 1614-6832
VL - 2
SP - 400
EP - 409
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 4
ER -