k-IOS: Intersection of spheres for efficient proximity query

Xinyu Zhang, Young J. Kim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

We present a new bounding volume structure, k-IOS that is an intersection of k spheres, for accelerating proximity query including collision detection and Euclidean distance computation between arbitrary polygon-soup models that undergo rigid motion. Our new bounding volume is easy to implement and highly efficient both for its construction and runtime query. In our experiments, we have observed up to 4.0 times performance improvement of proximity query compared to an existing well-known algorithm based on swept sphere volume (SSV) [1]. Moreover, k-IOS is strictly convex that can guarantee a continuous gradient of distance function with respect to object's configuration parameter.

Original languageEnglish
Title of host publication2012 IEEE International Conference on Robotics and Automation, ICRA 2012
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages354-359
Number of pages6
ISBN (Print)9781467314039
DOIs
StatePublished - 2012
Event 2012 IEEE International Conference on Robotics and Automation, ICRA 2012 - Saint Paul, MN, United States
Duration: 14 May 201218 May 2012

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
Country/TerritoryUnited States
CitySaint Paul, MN
Period14/05/1218/05/12

Fingerprint

Dive into the research topics of 'k-IOS: Intersection of spheres for efficient proximity query'. Together they form a unique fingerprint.

Cite this