TY - GEN
T1 - Joint learning of semantic alignment and object landmark detection
AU - Jeon, Sangryul
AU - Min, Dongbo
AU - Kim, Seungryong
AU - Sohn, Kwanghoon
N1 - Funding Information:
This research was supported by R&D program for Advanced Integrated-intelligence for Identification (AIID) through the National Research Foundation of KOREA (NRF) funded by Ministry of Science and ICT (NRF-2018M3E3A1057289). ∗Corresponding author
Publisher Copyright:
© 2019 IEEE.
PY - 2019/10
Y1 - 2019/10
N2 - Convolutional neural networks (CNNs) based approaches for semantic alignment and object landmark detection have improved their performance significantly. Current efforts for the two tasks focus on addressing the lack of massive training data through weakly- or unsupervised learning frameworks. In this paper, we present a joint learning approach for obtaining dense correspondences and discovering object landmarks from semantically similar images. Based on the key insight that the two tasks can mutually provide supervisions to each other, our networks accomplish this through a joint loss function that alternatively imposes a consistency constraint between the two tasks, thereby boosting the performance and addressing the lack of training data in a principled manner. To the best of our knowledge, this is the first attempt to address the lack of training data for the two tasks through the joint learning. To further improve the robustness of our framework, we introduce a probabilistic learning formulation that allows only reliable matches to be used in the joint learning process. With the proposed method, state-of-the-art performance is attained on several benchmarks for semantic matching and landmark detection.
AB - Convolutional neural networks (CNNs) based approaches for semantic alignment and object landmark detection have improved their performance significantly. Current efforts for the two tasks focus on addressing the lack of massive training data through weakly- or unsupervised learning frameworks. In this paper, we present a joint learning approach for obtaining dense correspondences and discovering object landmarks from semantically similar images. Based on the key insight that the two tasks can mutually provide supervisions to each other, our networks accomplish this through a joint loss function that alternatively imposes a consistency constraint between the two tasks, thereby boosting the performance and addressing the lack of training data in a principled manner. To the best of our knowledge, this is the first attempt to address the lack of training data for the two tasks through the joint learning. To further improve the robustness of our framework, we introduce a probabilistic learning formulation that allows only reliable matches to be used in the joint learning process. With the proposed method, state-of-the-art performance is attained on several benchmarks for semantic matching and landmark detection.
UR - http://www.scopus.com/inward/record.url?scp=85081914537&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2019.00739
DO - 10.1109/ICCV.2019.00739
M3 - Conference contribution
AN - SCOPUS:85081914537
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 7293
EP - 7302
BT - Proceedings - 2019 International Conference on Computer Vision, ICCV 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Y2 - 27 October 2019 through 2 November 2019
ER -