Isoquercitrin Attenuates Oxidative Liver Damage Through AMPK-YAP Signaling: An Integrative In Silico, In Vitro, and In Vivo Study

So Hyun Kwon, Won Yung Lee, Young Woo Kim, Kwang Suk Ko, Seon Been Bak, Sun Dong Park

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Isoquercitrin, a flavonoid glycoside found in various plants, has demonstrated antioxidant, anti-inflammatory, and anticancer properties. However, its hepatoprotective effects and underlying mechanisms against oxidative liver injury remain unclear. In this study, we evaluated the antioxidant and hepatoprotective effects of isoquercitrin using integrated in silico, in vitro, and in vivo approaches. HepG2 cells exposed to arachidonic acid (AA) and iron exhibited oxidative stress-induced apoptosis, which was significantly attenuated by isoquercitrin treatment, as evidenced by increased cell viability and reduced apoptosis-related protein alterations. Isoquercitrin decreased reactive oxygen species (ROS) generation and preserved mitochondrial function in a dose-dependent manner. Molecular docking and Western blot analyses revealed that isoquercitrin activates the LKB1/AMPK pathway, increasing phosphorylation of AMPK and its downstream target ACC, thereby modulating energy metabolism and reducing oxidative stress. This activation was LKB1 dependent, as confirmed in LKB1-deficient HeLa cells. Additionally, isoquercitrin modulated the YAP signaling pathway in hepatic cells. In vivo, isoquercitrin protected mice against carbon tetrachloride-induced liver injury, reducing serum ALT and AST levels and improving histopathological features. These findings suggest that isoquercitrin exerts hepatoprotective effects by activating the LKB1/AMPK pathway and modulating metabolic enzymes, highlighting its potential as a therapeutic agent against oxidative liver damage.

Original languageEnglish
JournalInternational Journal of Molecular Sciences
Volume26
Issue number6
DOIs
StatePublished - 18 Mar 2025

Keywords

  • LKB1/AMPK pathway
  • antioxidant activity
  • hepatoprotective effects
  • isoquercitrin
  • oxidative liver damage

Fingerprint

Dive into the research topics of 'Isoquercitrin Attenuates Oxidative Liver Damage Through AMPK-YAP Signaling: An Integrative In Silico, In Vitro, and In Vivo Study'. Together they form a unique fingerprint.

Cite this