TY - JOUR
T1 - Internalization and Transportation of Endothelial Cell Surface KCa2.3 and KCa3.1 in Normal Pregnancy and Preeclampsia
AU - Choi, Shinkyu
AU - Kim, Ji Aee
AU - Oh, Seikwan
AU - Park, Mi Hye
AU - Cho, Geum Joon
AU - Suh, Suk Hyo
N1 - Publisher Copyright:
© 2019 Shinkyu Choi et al.
PY - 2019
Y1 - 2019
N2 - Altered redox state modulates the expression levels of endothelial KCa2.3 and KCa3.1 (KCas) in normal pregnancy (NP) and preeclampsia (PE), thereby regulating vascular contractility. The mechanisms underlying KCas endocytosis and transportation remain unknown. We investigated the regulation of KCas expression in plasma membrane (PM) during NP and PE. Cultured human uterine artery endothelial cells were incubated in serum from normal nonpregnant women and women with NP or PE, or in oxidized LDL-, or lysophosphatidylcholine- (LPC-) containing a medium for 24 hours. NP serum elevated PM levels of KCas and reduced caveolin-1 and clathrin levels. PE serum, oxidized LDL, or LPC reduced PM levels of KCas and elevated caveolin-1, clathrin, Rab5c, and early endosome antigen-1 (EEA1) levels. Reduced KCas levels by PE serum or LPC were reversed by inhibition of caveolin-1, clathrin, or EEA1. Catalase and glutathione peroxidase 1 (GPX1) knockdown elevated PM-localized KCas levels and reduced caveolin-1 and clathrin levels. Elevated KCa2.3 levels upon catalase and GPX1 knockdown were reversed by PEG-catalase treatment. An H2O2 donor reduced clathrin and Rab5c. In contrast, elevated clathrin, caveolin-1, or colocalization of caveolin-1 with KCa3.1 by PE serum or LPC was reversed by NADPH oxidase inhibitors or antioxidants. A superoxide donor xanthine+xanthine oxidase elevated caveolin-1 or Rab5c levels. We concluded that KCas are endocytosed in a caveola- or a clathrin-dependent manner and transported in a Rab5c- and EEA1-dependent manner during pregnancy. The endocytosis and transportation processes may slow down via H2O2-mediated pathways in NP and may be accelerated via superoxide-mediated pathways in PE.
AB - Altered redox state modulates the expression levels of endothelial KCa2.3 and KCa3.1 (KCas) in normal pregnancy (NP) and preeclampsia (PE), thereby regulating vascular contractility. The mechanisms underlying KCas endocytosis and transportation remain unknown. We investigated the regulation of KCas expression in plasma membrane (PM) during NP and PE. Cultured human uterine artery endothelial cells were incubated in serum from normal nonpregnant women and women with NP or PE, or in oxidized LDL-, or lysophosphatidylcholine- (LPC-) containing a medium for 24 hours. NP serum elevated PM levels of KCas and reduced caveolin-1 and clathrin levels. PE serum, oxidized LDL, or LPC reduced PM levels of KCas and elevated caveolin-1, clathrin, Rab5c, and early endosome antigen-1 (EEA1) levels. Reduced KCas levels by PE serum or LPC were reversed by inhibition of caveolin-1, clathrin, or EEA1. Catalase and glutathione peroxidase 1 (GPX1) knockdown elevated PM-localized KCas levels and reduced caveolin-1 and clathrin levels. Elevated KCa2.3 levels upon catalase and GPX1 knockdown were reversed by PEG-catalase treatment. An H2O2 donor reduced clathrin and Rab5c. In contrast, elevated clathrin, caveolin-1, or colocalization of caveolin-1 with KCa3.1 by PE serum or LPC was reversed by NADPH oxidase inhibitors or antioxidants. A superoxide donor xanthine+xanthine oxidase elevated caveolin-1 or Rab5c levels. We concluded that KCas are endocytosed in a caveola- or a clathrin-dependent manner and transported in a Rab5c- and EEA1-dependent manner during pregnancy. The endocytosis and transportation processes may slow down via H2O2-mediated pathways in NP and may be accelerated via superoxide-mediated pathways in PE.
UR - http://www.scopus.com/inward/record.url?scp=85076083194&partnerID=8YFLogxK
U2 - 10.1155/2019/5820839
DO - 10.1155/2019/5820839
M3 - Article
C2 - 31871552
AN - SCOPUS:85076083194
SN - 1942-0900
VL - 2019
JO - Oxidative Medicine and Cellular Longevity
JF - Oxidative Medicine and Cellular Longevity
M1 - 5820839
ER -