Integrated Point-of-Care Molecular Diagnostic Devices for Infectious Diseases

Wenpeng Liu, Fei Yue, Luke P. Lee

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

ConspectusThe global outbreaks of deadly infectious diseases caused by pathogenic microorganisms have threatened public health worldwide and significantly motivated scientists to satisfy an urgent need for a rapid and accurate detection of pathogens. Traditionally, the culture-based technique is considered as the gold standard for pathogen detection, yet it has a long turnaround time due to the overnight culturing and pathogen isolation. Alternatively, nucleic acid amplification tests provide a relatively shorter turnaround time to identify whether pathogens exist in individuals with high sensitivity and high specificity. In most cases, nucleic acid amplification tests undergo three steps: sample preparation, nucleic acid amplification, and signal transduction. Despite the explosive advancement in nucleic acid amplification and signal transduction technologies, the complex and labor-intensive sample preparation steps remain a bottleneck to create a transformative integrated point-of-care (POC) molecular diagnostic device. Researchers have attempted to simplify and integrate the sample preparations for nucleic acid-based molecular diagnostic devices with innovative progress in integration strategies, engineered materials, reagent storages, and fluid actuation. Therefore, understanding the know-how and obtaining truthful knowledge of existing integrated POC molecular diagnostic devices comprising sample preparations, nucleic acid amplification, and signal transduction can generate innovative solutions to achieve personalized precision medicine and improve global health.In this Account, we discuss the challenges of automated sample preparation solutions integrated with nucleic acid amplification and signal transduction for rapid and precise home diagnostics. Blood, nasal swab, saliva, urine, and stool are emphasized as the most commonly used clinical samples for integrated POC molecular diagnostics of infectious diseases. Even though these five types of samples possess relatively correlated biomarkers due to the human body's circulatory system, each shows unique properties and exclusive advantages for molecular diagnostics in specific situations, which are included in this Account. We examine different integrated POC devices for sample preparation, which includes pathogen isolation and enrichment from the crude sample and nucleic acid purification from isolated pathogens. We present the promising on-chip integration approaches for nucleic acid amplification. We also investigate the on-chip integration methods for reagent storage, which is crucial to simplify the manual operation for end-users. Finally, we present several integrated POC molecular diagnostic devices for infectious diseases. The integrated sample preparation and nucleic acid amplification approach reviewed here can potentially impact the next generation of POC molecular home diagnostic chips, which will significantly impact public health, emergency medicine, and global biosecurity.

Original languageEnglish
Pages (from-to)4107-4119
Number of pages13
JournalAccounts of Chemical Research
Volume54
Issue number22
DOIs
StatePublished - 16 Nov 2021

Bibliographical note

Publisher Copyright:
© 2021 American Chemical Society.

Fingerprint

Dive into the research topics of 'Integrated Point-of-Care Molecular Diagnostic Devices for Infectious Diseases'. Together they form a unique fingerprint.

Cite this