TY - JOUR
T1 - Insights into the structure of the stable and metastable (GeTe) m(Sb2Te3)n compounds
AU - Da Silva, Juarez L.F.
AU - Walsh, Aron
AU - Lee, Hosun
PY - 2008/12/1
Y1 - 2008/12/1
N2 - Using first-principles calculations, we identify the mechanisms that lead to the lowest energy structures for the stable and metastable (GeTe) m (Sb2 Te3) n (GST) compounds, namely, strain energy release by the formation of superlattice structures along of the hexagonal [0001] direction and by maximizing the number of Te atoms surrounded by three Ge and three Sb atoms (3Ge-Te-3Sb rule) and Peierls-type bond dimerization. The intrinsic vacancies form ordered planes perpendicular to the stacking direction in both phases, which separate the GST building blocks. The 3Ge-Te-3Sb rule leads to the intermixing of Ge and Sb atoms in the (0001) planes for Ge3 Sb2 Te6 and Ge2 Sb2 Te5, while only single atomic species in the (0001) planes satisfy this rule for the GeSb2 Te4 and GeSb4 Te7 compositions. Furthermore, we explain the volume expansion of the metastable phase with respect to the stable phase as a consequence of the different stacking sequence of the Te atoms in the stable and metastable phases, which leads to a smaller Coulomb repulsion in the stable phase. The calculated equilibrium lattice parameters are in excellent agreement with experimental results and differ by less than 1% from the lattice parameters derived from a combination of the GeTe and Sb2 Te3 parent compounds.
AB - Using first-principles calculations, we identify the mechanisms that lead to the lowest energy structures for the stable and metastable (GeTe) m (Sb2 Te3) n (GST) compounds, namely, strain energy release by the formation of superlattice structures along of the hexagonal [0001] direction and by maximizing the number of Te atoms surrounded by three Ge and three Sb atoms (3Ge-Te-3Sb rule) and Peierls-type bond dimerization. The intrinsic vacancies form ordered planes perpendicular to the stacking direction in both phases, which separate the GST building blocks. The 3Ge-Te-3Sb rule leads to the intermixing of Ge and Sb atoms in the (0001) planes for Ge3 Sb2 Te6 and Ge2 Sb2 Te5, while only single atomic species in the (0001) planes satisfy this rule for the GeSb2 Te4 and GeSb4 Te7 compositions. Furthermore, we explain the volume expansion of the metastable phase with respect to the stable phase as a consequence of the different stacking sequence of the Te atoms in the stable and metastable phases, which leads to a smaller Coulomb repulsion in the stable phase. The calculated equilibrium lattice parameters are in excellent agreement with experimental results and differ by less than 1% from the lattice parameters derived from a combination of the GeTe and Sb2 Te3 parent compounds.
UR - http://www.scopus.com/inward/record.url?scp=58149477084&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.78.224111
DO - 10.1103/PhysRevB.78.224111
M3 - Article
AN - SCOPUS:58149477084
SN - 1098-0121
VL - 78
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 22
M1 - 224111
ER -