TY - JOUR
T1 - Influence of UDP-Glucuronosyltransferase Polymorphisms on Stable Warfarin Doses in Patients with Mechanical Cardiac Valves
AU - An, Sook Hee
AU - Chang, Byung Chul
AU - Lee, Kyung Eun
AU - Gwak, Hye Sun
N1 - Publisher Copyright:
© 2015 John Wiley and Sons Ltd.
PY - 2015/12
Y1 - 2015/12
N2 - Aim: This study aimed to evaluate the effect of uridine diphosphate (UDP)-glucuronosyltransferase (UGT) polymorphisms on warfarin dosing requirements in patients with mechanical cardiac valves. Methods: A total of 191 patients with stable warfarin doses from the EAST Group of Warfarin were included in this study. The influence of genetic polymorphisms on stable warfarin doses was investigated by genotyping 6 single nucleotide polymorphisms (SNPs): vitamin K epoxide reductase complex 1 (VKORC1) rs9934438, cytochrome P450 (CYP) 2C9 rs1057910, CYP4F2 rs2108622, and UGT1A1 (rs887829, rs4148323, and rs4124874). An additional subgroup analysis was carried out using patients with wild-type homozygote carriers of CYP2C9. Results: One UGT1A1 SNP of rs887829 (C>T) exhibited significant association with stable warfarin doses in the study population and subgroup. Patients with the T allele in UGT1A1 rs887829 (CT or TT) required higher doses than those with the CC genotype in the study population (6.3 ± 2.4 mg vs. 5.2 ± 1.6 mg, P = 0.003). Similarly, in the subpopulation of AA carriers in the CYP2C9 gene, patients with the T allele required significantly higher doses of warfarin than those with other genotypes of rs887829 (6.5 ± 2.4 vs. 5.3 ± 1.5 mg, P = 0.002). Approximately 45.1% of overall interindividual variability in warfarin dose requirement was explained by the multivariate regression model. VKORC1, CYP2C9, UGT1A1 rs887829, age, and CYP4F2 accounted for 28.2%, 6.6%, 5.5%, 3.0%, and 1.8% of the variability, respectively. Conclusion: Our results suggest that UGT1A1 could be a determinant of stable warfarin doses.
AB - Aim: This study aimed to evaluate the effect of uridine diphosphate (UDP)-glucuronosyltransferase (UGT) polymorphisms on warfarin dosing requirements in patients with mechanical cardiac valves. Methods: A total of 191 patients with stable warfarin doses from the EAST Group of Warfarin were included in this study. The influence of genetic polymorphisms on stable warfarin doses was investigated by genotyping 6 single nucleotide polymorphisms (SNPs): vitamin K epoxide reductase complex 1 (VKORC1) rs9934438, cytochrome P450 (CYP) 2C9 rs1057910, CYP4F2 rs2108622, and UGT1A1 (rs887829, rs4148323, and rs4124874). An additional subgroup analysis was carried out using patients with wild-type homozygote carriers of CYP2C9. Results: One UGT1A1 SNP of rs887829 (C>T) exhibited significant association with stable warfarin doses in the study population and subgroup. Patients with the T allele in UGT1A1 rs887829 (CT or TT) required higher doses than those with the CC genotype in the study population (6.3 ± 2.4 mg vs. 5.2 ± 1.6 mg, P = 0.003). Similarly, in the subpopulation of AA carriers in the CYP2C9 gene, patients with the T allele required significantly higher doses of warfarin than those with other genotypes of rs887829 (6.5 ± 2.4 vs. 5.3 ± 1.5 mg, P = 0.002). Approximately 45.1% of overall interindividual variability in warfarin dose requirement was explained by the multivariate regression model. VKORC1, CYP2C9, UGT1A1 rs887829, age, and CYP4F2 accounted for 28.2%, 6.6%, 5.5%, 3.0%, and 1.8% of the variability, respectively. Conclusion: Our results suggest that UGT1A1 could be a determinant of stable warfarin doses.
KW - Cytochrome P450 subfamily 2C polypeptide 9 (CYP2C9)
KW - Polymorphism
KW - Uridine diphosphate (UDP)-Glucuronosyltransferase (UGT)
KW - Warfarin
UR - http://www.scopus.com/inward/record.url?scp=84945972618&partnerID=8YFLogxK
U2 - 10.1111/1755-5922.12147
DO - 10.1111/1755-5922.12147
M3 - Article
C2 - 26223945
AN - SCOPUS:84945972618
SN - 1755-5914
VL - 33
SP - 324
EP - 328
JO - Cardiovascular Therapeutics
JF - Cardiovascular Therapeutics
IS - 6
ER -