Abstract
CZTSSe thin-films were deposited by stacked sputtering methods (ZnS/SnS/Cu) and annealed with selenization. We adjusted the thickness of the ZnS precursor layer in CZT precursors. A 337 nm thickness of ZnS precursor was shown an efficiency of up to 9.1%. We investigated the secondary phases by Raman spectroscopy and Kelvin probe force microscopy with depth profiles. The Cu2SnSe3, ZnSe, and MoSe2 secondary phases appeared near the back contact region. The phase distributions of the CZTSSe thin-films are different depending on ZnS precursor thickness with different depths. This phase characterization can describe the influences to the device performance of the CZTSSe thin-film solar cells.
Original language | English |
---|---|
Title of host publication | 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781479979448 |
DOIs | |
State | Published - 14 Dec 2015 |
Event | 42nd IEEE Photovoltaic Specialist Conference, PVSC 2015 - New Orleans, United States Duration: 14 Jun 2015 → 19 Jun 2015 |
Publication series
Name | 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015 |
---|
Conference
Conference | 42nd IEEE Photovoltaic Specialist Conference, PVSC 2015 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 14/06/15 → 19/06/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
Keywords
- Cu2ZnSn(S,Se)4
- Depth profile
- Kelvin probe force microscopy
- Raman spectroscopy
- Secondary phase
- and photo-conversion efficiency