Abstract
This paper presents an impact based piezoelectric vibration energy harvester using freely movable metal spheres as proof mass and an MFC (Macro Fiber Composite) beam as a piezoelectric cantilever. External vibration is transformed into free motion of metal spheres inside the channels and impact between the metal sphere and channel end induces a vibration of the MFC beam to generate electric power. A proof-of-concept device having the form-factor of a conventional wristwatch has been designed and tested to harvest energy from low frequency human-body-induced vibrations. Geometry at both ends of the cavities has been optimized to effectively transmit energy to piezoelectric cantilever and thus achieve a higher output power. For a device having an effective volume of 4.59cm3, maximum peak-to-peak open circuit voltage of 54V and RMS output power of 621μW have been achieved, when the fabricated energy harvester was mounted on a wristwatch and shaken manually.
Original language | English |
---|---|
Title of host publication | 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2015 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1913-1916 |
Number of pages | 4 |
ISBN (Electronic) | 9781479989553 |
DOIs | |
State | Published - 5 Aug 2015 |
Event | 18th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2015 - Anchorage, United States Duration: 21 Jun 2015 → 25 Jun 2015 |
Publication series
Name | 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2015 |
---|
Conference
Conference | 18th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2015 |
---|---|
Country/Territory | United States |
City | Anchorage |
Period | 21/06/15 → 25/06/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
Keywords
- Indirect impact
- Macro fiber composite
- Vibration energy harvesting