In Vivo Albumin Traps Photosensitizer Monomers from Self-Assembled Phthalocyanine Nanovesicles: A Facile and Switchable Theranostic Approach

Xingshu Li, Sungsook Yu, Yoonji Lee, Tian Guo, Nahyun Kwon, Dayoung Lee, Su Cheong Yeom, Yejin Cho, Gyoungmi Kim, Jian Dong Huang, Sun Choi, Ki Taek Nam, Juyoung Yoon

Research output: Contribution to journalArticlepeer-review

160 Scopus citations

Abstract

Albumin is a promising candidate as a biomarker for potential disease diagnostics and has been extensively used as a drug delivery carrier for decades. In these two directions, many albumin-detecting probes and exogenous albumin-based nanocomposite delivery systems have been developed. However, there are only a few cases demonstrating the specific interactions of exogenous probes with albumin in vivo, and nanocomposite delivery systems usually suffer from tedious fabrication processes and potential toxicity of the complexes. Herein, we demonstrate a facile "one-for-all" switchable nanotheranostic (NanoPcS) for both albumin detection and cancer treatment. In particular, the in vivo specific binding between albumin and PcS, arising from the disassembly of injected NanoPcS, is confirmed using an inducible transgenic mouse system. Fluorescence imaging and antitumor tests on different tumor models suggest that NanoPcS has superior tumor-targeting ability and the potential for time-modulated, activatable photodynamic therapy.

Original languageEnglish
Pages (from-to)1366-1372
Number of pages7
JournalJournal of the American Chemical Society
Volume141
Issue number3
DOIs
StatePublished - 23 Jan 2019

Bibliographical note

Publisher Copyright:
© 2018 American Chemical Society.

Fingerprint

Dive into the research topics of 'In Vivo Albumin Traps Photosensitizer Monomers from Self-Assembled Phthalocyanine Nanovesicles: A Facile and Switchable Theranostic Approach'. Together they form a unique fingerprint.

Cite this