In situ studies of growth of carbon nanotubes on a local metal microheater

O. A. Nerushev, J. Ek-Weis, E. E.B. Campbell

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Using electron microscopy and in situ Raman spectroscopy we investigate carbon nanotube growth from ethylene on iron catalyst islands patterned on top of Mo electrodes, using a highly localized resistive on-chip-heating technique. A clear transition is observed between multi-walled and single-walled nanotube growth as the local temperature of the heater is increased. This can be rationalized in terms of the balance between incoming carbon flux and diffusion through the catalyst particle. The observed changes in heater performance on exposure to the hydrocarbon gas are explored and related to the formation of molybdenum carbide, leading to a rapid change in resistivity and heating power that increases the local temperature of the heater by up to 100 °C. This provides optimum conditions for nanotube growth after an incubation time that depends on the carbon flux.

Original languageEnglish
Article number505601
JournalNanotechnology
Volume26
Issue number50
DOIs
StatePublished - 18 Nov 2015

Bibliographical note

Publisher Copyright:
© 2015 IOP Publishing Ltd.

Keywords

  • Carbon nanotubes
  • in situ Raman spectroscopy
  • local cvd growth

Fingerprint

Dive into the research topics of 'In situ studies of growth of carbon nanotubes on a local metal microheater'. Together they form a unique fingerprint.

Cite this