Abstract
The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdOx-NiOy/C nanocomposite to generate catalytically active species in situ, and the resultant nanocatalyst shows sustainable activity through synergistic stabilization.
Original language | English |
---|---|
Article number | 461 |
Journal | Nanoscale Research Letters |
Volume | 7 |
DOIs | |
State | Published - 2012 |
Bibliographical note
Funding Information:This work was supported by the start-up grant of the UNIST (Ulsan National Institute of Science and Technology) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0004358 and 2012–0003813). SHJ is a TJ Park Junior Faculty Fellow supported by the POSCO TJ Park Foundation. JMK also thanks WCU (World Class University, R-31-2008-10029).
Keywords
- CO oxidation
- Metal oxide
- Metal-organic framework
- Nanoparticle
- Palladium
- Redox reaction