TY - JOUR
T1 - In-situ food spoilage monitoring using a wireless chemical receptor-conjugated graphene electronic nose
AU - Kim, Kyung Ho
AU - Park, Chul Soon
AU - Park, Seon Joo
AU - Kim, Jinyeong
AU - Seo, Sung Eun
AU - An, Jai Eun
AU - Ha, Siyoung
AU - Bae, Joonwon
AU - Phyo, Sooyeol
AU - Lee, Jiwon
AU - Kim, Kayoung
AU - Moon, Dongseok
AU - Park, Tai Hyun
AU - Song, Hyun Seok
AU - Kwon, Oh Seok
N1 - Publisher Copyright:
© 2021
PY - 2022/3/15
Y1 - 2022/3/15
N2 - Monitoring food spoilage is one of the most effective methods for preventing food poisoning caused by biogenic amines or microbes. Therefore, various analytical techniques have been introduced to detect low concentrations of cadaverine (CV) and putrescine (PT), which are representative biogenic polyamines involved in food spoilage (5–8 ppm at the stage of initial decomposition after storage for 5 days at 5 °C and 17–186 ppm at the stage of advanced decomposition after storage for 7 days at 5 °C). Although previous methods showed selective CV and PT detection even at low concentrations, the use of these methods remains challenging in research areas that require in-situ, real-time, on-site monitoring. In this study, we demonstrated for the first time an in-situ high-performance chemical receptor-conjugated graphene electronic nose (CRGE-nose) whose limits of detection (LODs), 27.04 and 7.29 ppb, for CV and PT are up to 102 times more sensitive than those of conventional biogenic amine sensors. Specifically, the novel chemical receptors 2,7-bis(3-morpholinopropyl)benzo[lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (NaPhdiMor (NPM)) and 2,7-bis(2-((3-morpholinopropyl)amino)ethyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NaPhdiEtAmMor (NPEAM)) were designed on the basis of density functional theory (DFT) calculations, and their interaction mechanism was characterized by a DFT 3D simulation. Interestingly, the CRGE-nose was connected on a micro sim chip substrate via wire bonding and then integrated into wireless portable devices, resulting in a cost-effective, high-performance prototype CRGE-nose device capable of on-site detection. The portable CRGE-nose can be used for in-situ monitoring of CV and PT concentration changes as low as 27.04 and 7.29 ppb in real meats such as pork, beef, lamb and chicken.
AB - Monitoring food spoilage is one of the most effective methods for preventing food poisoning caused by biogenic amines or microbes. Therefore, various analytical techniques have been introduced to detect low concentrations of cadaverine (CV) and putrescine (PT), which are representative biogenic polyamines involved in food spoilage (5–8 ppm at the stage of initial decomposition after storage for 5 days at 5 °C and 17–186 ppm at the stage of advanced decomposition after storage for 7 days at 5 °C). Although previous methods showed selective CV and PT detection even at low concentrations, the use of these methods remains challenging in research areas that require in-situ, real-time, on-site monitoring. In this study, we demonstrated for the first time an in-situ high-performance chemical receptor-conjugated graphene electronic nose (CRGE-nose) whose limits of detection (LODs), 27.04 and 7.29 ppb, for CV and PT are up to 102 times more sensitive than those of conventional biogenic amine sensors. Specifically, the novel chemical receptors 2,7-bis(3-morpholinopropyl)benzo[lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (NaPhdiMor (NPM)) and 2,7-bis(2-((3-morpholinopropyl)amino)ethyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NaPhdiEtAmMor (NPEAM)) were designed on the basis of density functional theory (DFT) calculations, and their interaction mechanism was characterized by a DFT 3D simulation. Interestingly, the CRGE-nose was connected on a micro sim chip substrate via wire bonding and then integrated into wireless portable devices, resulting in a cost-effective, high-performance prototype CRGE-nose device capable of on-site detection. The portable CRGE-nose can be used for in-situ monitoring of CV and PT concentration changes as low as 27.04 and 7.29 ppb in real meats such as pork, beef, lamb and chicken.
KW - Cadaverine
KW - Chemical receptor
KW - Gas sensor
KW - Graphene
KW - Portable biosensors
KW - Putrescine
KW - Real-time monitoring
UR - http://www.scopus.com/inward/record.url?scp=85122058049&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2021.113908
DO - 10.1016/j.bios.2021.113908
M3 - Article
C2 - 34972042
AN - SCOPUS:85122058049
SN - 0956-5663
VL - 200
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 113908
ER -