TY - JOUR
T1 - In-Situ Crafting of ZnFe2O4 Nanoparticles Impregnated within Continuous Carbon Network as Advanced Anode Materials
AU - Jiang, Beibei
AU - Han, Cuiping
AU - Li, Bo
AU - He, Yanjie
AU - Lin, Zhiqun
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/2/23
Y1 - 2016/2/23
N2 - The ability to create a synergistic effect of nanostructure engineering and its hybridization with conductive carbonaceous material is highly desirable for attaining high-performance lithium ion batteries (LIBs). Herein, we judiciously crafted ZnFe2O4/carbon nanocomposites composed of ZnFe2O4 nanoparticles with an average size of 16 ± 5 nm encapsulated within the continuous carbon network as anode materials for LIBs. Such intriguing nanocomposites were yielded in situ via the pyrolysis-induced carbonization of polystyrene@poly(acrylic acid) (PS@PAA) core@shell nanospheres in conjunction with the formation of ZnFe2O4 nanoparticles through the thermal decomposition of ZnFe2O4 precursors incorporated within the PS@PAA nanospheres. By systematically varying the ZnFe2O4 content in the ZnFe2O4/carbon nanocomposites, the nanocomposite containing 79.3 wt % ZnFe2O4 was found to exhibit an excellent rate performance with high capacities of 1238, 1198, 1136, 1052, 926, and 521 mAh g-1 at specific currents of 100, 200, 500, 1000, 2000, and 5000 mA g-1, respectively. Moreover, cycling performance of the ZnFe2O4/carbon nanocomposite with 79.3 wt % ZnFe2O4 at specific currents of 200 mA g-1 delivered an outstanding prolonged cycling stability for several hundred cycles.
AB - The ability to create a synergistic effect of nanostructure engineering and its hybridization with conductive carbonaceous material is highly desirable for attaining high-performance lithium ion batteries (LIBs). Herein, we judiciously crafted ZnFe2O4/carbon nanocomposites composed of ZnFe2O4 nanoparticles with an average size of 16 ± 5 nm encapsulated within the continuous carbon network as anode materials for LIBs. Such intriguing nanocomposites were yielded in situ via the pyrolysis-induced carbonization of polystyrene@poly(acrylic acid) (PS@PAA) core@shell nanospheres in conjunction with the formation of ZnFe2O4 nanoparticles through the thermal decomposition of ZnFe2O4 precursors incorporated within the PS@PAA nanospheres. By systematically varying the ZnFe2O4 content in the ZnFe2O4/carbon nanocomposites, the nanocomposite containing 79.3 wt % ZnFe2O4 was found to exhibit an excellent rate performance with high capacities of 1238, 1198, 1136, 1052, 926, and 521 mAh g-1 at specific currents of 100, 200, 500, 1000, 2000, and 5000 mA g-1, respectively. Moreover, cycling performance of the ZnFe2O4/carbon nanocomposite with 79.3 wt % ZnFe2O4 at specific currents of 200 mA g-1 delivered an outstanding prolonged cycling stability for several hundred cycles.
KW - advanced anode
KW - continuous carbon network
KW - lithium-ion batteries
KW - ZnFeO nanoparticles
UR - http://www.scopus.com/inward/record.url?scp=84960171858&partnerID=8YFLogxK
U2 - 10.1021/acsnano.5b07806
DO - 10.1021/acsnano.5b07806
M3 - Article
AN - SCOPUS:84960171858
SN - 1936-0851
VL - 10
SP - 2728
EP - 2735
JO - ACS Nano
JF - ACS Nano
IS - 2
ER -