Abstract
Various databases of density functional theory (DFT) calculations for materials and adsorption properties are currently available. Using the Materials Project and GASpy databases of material stability and binding energies (H* and CO*), respectively, we evaluate multiple aspects of catalysts to discover active, stable, CO-tolerant, and cost-effective hydrogen evolution and oxidation catalysts. Finally, we suggest a few candidate materials for future experimental validations. We highlight that the stability analysis is easily obtainable but provides invaluable information to assess thermodynamic and electrochemical stability, bridging the gap between simulations and experiments. Furthermore, it reduces the number of expensive DFT calculations required to predict catalytic activities of surfaces by filtering out unstable materials.
Original language | English |
---|---|
Pages (from-to) | 19454-19458 |
Number of pages | 5 |
Journal | Physical Chemistry Chemical Physics |
Volume | 22 |
Issue number | 35 |
DOIs | |
State | Published - 21 Sep 2020 |
Bibliographical note
Publisher Copyright:© the Owner Societies 2020.