Abstract
The increase of atmospheric greenhouse gases such as CO2 has caused noticeable climate change. Since increased CO2 may contribute to carbon storage in terrestrial ecosystems through the CO2 cycle between the atmosphere and vegetation, it is necessary to improve methods for measuring C in soil. In this study, we determined the total carbon concentrations of soils using a highly sensitive and rapid method, laser-induced breakdown spectroscopy. The presence of C has been measured by detecting signal at the wavelength of 247.86 nm. The obstacle of Fe interference at the C measurement wavelength of 247.86 nm was reduced by selecting the optimal delay time of 1.4 μs. The ratio of peak intensities (areas) at 247.86 nm for C and 248.20 nm for Fe was then successfully applied to the calibration curve. In addition, to dismiss the problem of measuring the C lines at 247.86 nm, 193.03 nm has been used to observe C emission. Both the 193.03- and 247.86-nm lines provided significant linear calibrations. The 193.03-nm lines presented stronger relative accuracies in predicting the lower C concentrations of the unknown samples than that one at 247.86 nm.
Original language | English |
---|---|
Article number | 28 |
Pages (from-to) | 1-11 |
Number of pages | 11 |
Journal | Environmental Monitoring and Assessment |
Volume | 187 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2015 |
Bibliographical note
Publisher Copyright:© 2015, Springer International Publishing Switzerland.
Keywords
- Carbon
- Climate change
- Delay time
- Fe interference
- Laser-induced breakdown spectroscopy (LIBS)
- Soil