Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors

Junhyug Noh, Soochan Lee, Beomsu Kim, Gunhee Kim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

77 Scopus citations

Abstract

We propose methods of addressing two critical issues of pedestrian detection: (i) occlusion of target objects as false negative failure, and (ii) confusion with hard negative examples like vertical structures as false positive failure. Our solutions to these two problems are general and flexible enough to be applicable to any single-stage detection models. We implement our methods into four state-of-the-art single-stage models, including SqueezeDet+ [22], YOLOv2 [17], SSD [12], and DSSD [8]. We empirically validate that our approach indeed improves the performance of those four models on Caltech pedestrian [4] and CityPersons dataset [25]. Moreover, in some heavy occlusion settings, our approach achieves the best reported performance. Specifically, our two solutions are as follows. For better occlusion handling, we update the output tensors of single-stage models so that they include the prediction of part confidence scores, from which we compute a final occlusion-aware detection score. For reducing confusion with hard negative examples, we introduce average grid classifiers as post-refinement classifiers, trainable in an end-to-end fashion with little memory and time overhead (e.g. increase of 1-5 MB in memory and 1-2 ms in inference time).

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PublisherIEEE Computer Society
Pages966-974
Number of pages9
ISBN (Electronic)9781538664209
DOIs
StatePublished - 14 Dec 2018
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
Duration: 18 Jun 201822 Jun 2018

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Country/TerritoryUnited States
CitySalt Lake City
Period18/06/1822/06/18

Bibliographical note

Publisher Copyright:
© 2018 IEEE.

Fingerprint

Dive into the research topics of 'Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors'. Together they form a unique fingerprint.

Cite this