Impact of Synaptic Device Variations on Pattern Recognition Accuracy in a Hardware Neural Network

Sungho Kim, Meehyun Lim, Yeamin Kim, Hee Dong Kim, Sung Jin Choi

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

Neuromorphic systems (hardware neural networks) derive inspiration from biological neural systems and are expected to be a computing breakthrough beyond conventional von Neumann architecture. Interestingly, in neuromorphic systems, the processing and storing of information can be performed simultaneously by modulating the connection strength of a synaptic device (i.e., synaptic weight). Previously investigated synaptic devices can emulate the functionality of biological synapses successfully by utilizing various nano-electronic phenomena; however, the impact of intrinsic synaptic device variability on the system performance has not yet been studied. Here, we perform a device-to-system level simulation of different synaptic device variation parameters in a designed neuromorphic system that has the potential for unsupervised learning and pattern recognition. The effects of variations in parameters such as the weight modulation nonlinearity (NL), the minimum-maximum weight (Gmin and Gmax), and the weight update margin (ΔG) on the pattern recognition accuracy are analyzed quantitatively. These simulation results can provide guidelines for the continued design and optimization of a synaptic device for realizing a functional large-scale neuromorphic computing system.

Original languageEnglish
Article number2638
JournalScientific Reports
Volume8
Issue number1
DOIs
StatePublished - 1 Dec 2018

Bibliographical note

Publisher Copyright:
© 2018 The Author(s).

Fingerprint

Dive into the research topics of 'Impact of Synaptic Device Variations on Pattern Recognition Accuracy in a Hardware Neural Network'. Together they form a unique fingerprint.

Cite this