@inproceedings{62c7c1adc7d1471bae0ec672eb7304cf,
title = "Imaging of iron oxide nanoparticles using magneto-motive ultrasound",
abstract = "Due to its excellent spatial resolution, fast and reliable performance, cost and wide availability, ultrasound should be considered the imaging modality of choice for many applications including molecular imaging. However, ultrasound imaging cannot image molecular content of tissue due to trade-off between spatial resolution and penetration depth. Consequently, contrast agents have been developed both to enhance the contrast of ultrasound images and to make the images molecularly specific. Most ultrasound contrast agents, however, are micrometer sized and may not be applicable to wide range of pathology-specific cellular and molecular imaging. We have developed an imaging technique - magneto-motive ultrasound (MMUS) imaging, capable of imaging magnetic nanoparticles subjected to time-varying magnetic field. The result of our studies indicate that magnetically excited nanoparticles can be used as contrast agents in magneto-motive ultrasound imaging thus expanding the role of ultrasound imaging to cellular scales and molecular sensitivity.",
keywords = "Cellular imaging, Contrast agents, Imaging, Magnetic force, Magnetomotive, Molecular imaging, Nanocomposites, Nanoparticles, Ultrasound",
author = "M. Mehrmohammadi and J. Oh and L. Ma and E. Yantsen and T. Larson and S. Mallidi and S. Park and Johnston, {K. P.} and K. Sokolov and T. Milner and S. Emelianov",
year = "2007",
doi = "10.1109/ULTSYM.2007.169",
language = "English",
isbn = "1424413834",
series = "Proceedings - IEEE Ultrasonics Symposium",
pages = "652--655",
booktitle = "2007 IEEE Ultrasonics Symposium Proceedings, IUS",
note = "2007 IEEE Ultrasonics Symposium, IUS ; Conference date: 28-10-2007 Through 31-10-2007",
}