Abstract
Background: The clinical application of the multi-echo, multi-delay technique of synthetic magnetic resonance imaging (MRI) generates multiple sequences in a single acquisition but has mainly been used in adults. Objective: To evaluate the image quality of synthetic brain MR in children compared with that of conventional images. Materials and methods: Twenty-nine children (median age: 6 years, range: 0–16 years) underwent synthetic and conventional imaging. Synthetic (T2-weighted, T1-weighted and fluid-attenuated inversion recovery [FLAIR]) images with settings matching those of the conventional images were generated. The overall image quality, gray/white matter differentiation, lesion conspicuity and image degradations were rated on a 5-point scale. The relative contrasts were assessed quantitatively and acquisition times for the two imaging techniques were compared. Results: Synthetic images were inferior due to more pronounced image degradations; however, there were no significant differences for T1- and T2-weighted images in children <2 years old. The quality of T1- and T2-weighted images were within the diagnostically acceptable range. FLAIR images showed greatly reduced quality. Gray/white matter differentiation was comparable or better in synthetic T1- and T2-weighted images, but poorer in FLAIR images. There was no effect on lesion conspicuity. Synthetic images had equal or greater relative contrast. Acquisition time was approximately two-thirds of that for conventional sequences. Conclusion: Synthetic T1- and T2-weighted images were diagnostically acceptable, but synthetic FLAIR images were not. Lesion conspicuity and gray/white matter differentiation were comparable to conventional MRI.
Original language | English |
---|---|
Pages (from-to) | 1638-1647 |
Number of pages | 10 |
Journal | Pediatric Radiology |
Volume | 47 |
Issue number | 12 |
DOIs | |
State | Published - 1 Nov 2017 |
Bibliographical note
Publisher Copyright:© 2017, Springer-Verlag Berlin Heidelberg.
Keywords
- Brain
- Children
- Image quality
- Magnetic resonance imaging
- Multi-echo multi-delay magnetic resonance imaging
- Neonates
- Synthetic imaging