Identifying the ground state structures of point defects in solids

Irea Mosquera-Lois, Seán R. Kavanagh, Aron Walsh, David O. Scanlon

Research output: Contribution to journalArticlepeer-review

33 Scopus citations


Point defects are a universal feature of crystals. Their identification is addressed by combining experimental measurements with theoretical models. The standard modelling approach is, however, prone to missing the ground state atomic configurations associated with energy-lowering reconstructions from the idealised crystallographic environment. Missed ground states compromise the accuracy of calculated properties. To address this issue, we report an approach to navigate the defect configurational landscape using targeted bond distortions and rattling. Application of our workflow to eight materials (CdTe, GaAs, Sb2S3, Sb2Se3, CeO2, In2O3, ZnO, anatase-TiO2) reveals symmetry breaking in each host crystal that is not found via conventional local minimisation techniques. The point defect distortions are classified by the associated physico-chemical factors. We demonstrate the impact of these defect distortions on derived properties, including formation energies, concentrations and charge transition levels. Our work presents a step forward for quantitative modelling of imperfect solids.

Original languageEnglish
Article number25
Journalnpj Computational Materials
Issue number1
StatePublished - Dec 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).


Dive into the research topics of 'Identifying the ground state structures of point defects in solids'. Together they form a unique fingerprint.

Cite this