TY - JOUR
T1 - Identification of genes with differential expression in chemoresistant epithelial ovarian cancer using high-density oligonucleotide microarrays
AU - Ju, Woong
AU - Yoo, Byong Chul
AU - Kim, Il Jin
AU - Kim, Jae Weon
AU - Kim, Seung Cheol
AU - Lee, Hyo Pyo
PY - 2009
Y1 - 2009
N2 - A major obstacle in treatment of epithelial ovarian cancer is chemoresistance. The aim of this study was to determine whether distinct gene expression profiles are associated with chemoresistance in epithelial ovarian carcinoma. We performed global gene expression analysis in 13 primary epithelial ovarian cancer tissues including 5 primary chemosensitive tumors and 8 primary chemoresistant tumors using Affymetrix HG-U133A microarray. The gene expression patterns of chemosensitive tumors were compared with those of chemoresistant tumors using fold change. Validity of microarray results was examined by semiquantitative RT-PCR. We identified over 320 genes differentially expressed in chemoresistant epithelial ovarian cancer (≥ twofold). Upregulated genes in chemoresistant tumors included cell cycle regulating genes (TOP2A, BCAT1, CDCA8, CCNA2, CENPE), and genes with previously known mechanisms in tumorigenesis (S100A9, APOA1, RNF125, IFI16). Downregulated genes in chemoresistant tumors included genes related to cell adhesion (MUC5B, CITED2), transcription regulating genes (FOXD1, MAD1L1, PAX2), genes involving signal transduction (SOSTDC1, SNX1, SFRP1, FOXA2, PLK2), and stress protein gene (TP53AP1). These data show that gene expression profiling can discriminate primary chemoresistant from primary chemosensitive ovarian cancers. This type of molecular profiling could provide a basis for additional functional studies.
AB - A major obstacle in treatment of epithelial ovarian cancer is chemoresistance. The aim of this study was to determine whether distinct gene expression profiles are associated with chemoresistance in epithelial ovarian carcinoma. We performed global gene expression analysis in 13 primary epithelial ovarian cancer tissues including 5 primary chemosensitive tumors and 8 primary chemoresistant tumors using Affymetrix HG-U133A microarray. The gene expression patterns of chemosensitive tumors were compared with those of chemoresistant tumors using fold change. Validity of microarray results was examined by semiquantitative RT-PCR. We identified over 320 genes differentially expressed in chemoresistant epithelial ovarian cancer (≥ twofold). Upregulated genes in chemoresistant tumors included cell cycle regulating genes (TOP2A, BCAT1, CDCA8, CCNA2, CENPE), and genes with previously known mechanisms in tumorigenesis (S100A9, APOA1, RNF125, IFI16). Downregulated genes in chemoresistant tumors included genes related to cell adhesion (MUC5B, CITED2), transcription regulating genes (FOXD1, MAD1L1, PAX2), genes involving signal transduction (SOSTDC1, SNX1, SFRP1, FOXA2, PLK2), and stress protein gene (TP53AP1). These data show that gene expression profiling can discriminate primary chemoresistant from primary chemosensitive ovarian cancers. This type of molecular profiling could provide a basis for additional functional studies.
KW - Chemoresistant tumors
KW - Chemosensitive tumors
KW - Gene expression
KW - Ovarian cancer
UR - http://www.scopus.com/inward/record.url?scp=75649089728&partnerID=8YFLogxK
U2 - 10.3727/096504009789954672
DO - 10.3727/096504009789954672
M3 - Article
C2 - 20066894
AN - SCOPUS:75649089728
SN - 0965-0407
VL - 18
SP - 47
EP - 56
JO - Oncology Research
JF - Oncology Research
IS - 2-3
ER -