Hybrid architecture of rhodium oxide nanofibers and ruthenium oxide nanowires for electrocatalysts

Yu Lim Kim, Yejin Ha, Nam Suk Lee, Joo Gon Kim, Jeong Min Baik, Chongmok Lee, Kyunghwan Yoon, Youngmi Lee, Myung Hwa Kim

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

We report the synthesis and electrochemical performances of the hybrid architecture of rhodium oxide (Rh2O3) nanofibers (NF) and highly single crystalline RuO2 nanowires (NW) by combining the electrospinning process and a simple recrystallization process. The amorphous Ru(OH)3·xH2O precursors at relatively low temperature were efficiently transformed into highly single crystalline RuO2 nanowires with the tetragonal rutile structure on electrospun Rh2O3 nanofibers. Pure Rh2O3 NF and hybrid RuO2 NW-Rh2O3 NF exhibited different electroactivities toward H2O2 electrochemical reaction: Rh2O3 NF facilitates the H2O2 oxidation vs. hybrid RuO2 NW-Rh2O3 NF promotes H2O2 reduction more favorably. The H2O2 reduction free from O2 reduction interference at RuO2 NW-Rh2O3 NF is advantageous and finds the feasibility for selective H2O2 detection in various samples. Furthermore, RuO2 NW-Rh2O3 NF generated a greatly higher current induced by H2O2 reduction (i.e., enhanced sensitivity to H2O2) than bare Rh2O3 NF.

Original languageEnglish
Pages (from-to)574-580
Number of pages7
JournalJournal of Alloys and Compounds
Volume663
DOIs
StatePublished - 5 Apr 2016

Keywords

  • Electrocatalyst
  • Nanofiber
  • Nanowire
  • Rhodium oxide
  • Ruthenium oxide

Fingerprint

Dive into the research topics of 'Hybrid architecture of rhodium oxide nanofibers and ruthenium oxide nanowires for electrocatalysts'. Together they form a unique fingerprint.

Cite this