TY - JOUR
T1 - Highly efficient organic dye removal from waters by magnetically recoverable La2O2CO3/ZnFe2O4-reduced graphene oxide nanohybrid
AU - Han, Jonghun
AU - Jun, Byung Moon
AU - Heo, Jiyong
AU - Lee, Gooyong
AU - Yoon, Yeomin
AU - Park, Chang Min
N1 - Publisher Copyright:
© 2019 Elsevier Ltd and Techna Group S.r.l.
PY - 2019/10/15
Y1 - 2019/10/15
N2 - Organic dyes released in the form of textile effluent have caused serious pollution of aqueous environments. Here, we report a reduced graphene oxide (rGO) loaded with La2O2CO3 and ZnFe2O4 (ZF) nanoparticles (LGZF) as a highly efficient adsorbent, which was synthesized through a simple precipitation-hydrothermal method. The LGZF nanohybrids were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, magnetic property, zeta potential, and surface area measurements. The effectiveness of cationic dye sorption on the adsorbent was examined under several experimental variables such as contact time, initial dyes concentrations, solution pH, and solution temperature. A novel magnetic nanohybrid with interlayer crystal structures exhibited an enhanced sorption capacities for methylene blue (MB) and rhodamine B (RhB) from contaminated water in comparison to bare rGO and ZF, in which LGZF with a mass ratio of La to Fe of 1:1 showed the highest adsorption activity. The Langmuir and pseudo-second-order model fully explained experimental adsorption and kinetics data. LGZF displayed maximum adsorption capacity of 201 and 98.4 mg/g for MB and RhB, respectively. The MB and RhB adsorption onto LGZF involved a spontaneous and an endothermic chemisorption through a combination of π–π interaction, electrostatic interaction, surface complexation, and hydrogen bonding. Furthermore, feasibility on the removal of organic dyes and antibiotic in surface water was also evaluated. The enhanced adsorption performance of the LGZF nanohybrid can be attributed to the incorporation of the characteristic La and Zn elements on rGO, which promotes the synergistic effects between rGO, La2O2CO3, and ZF.
AB - Organic dyes released in the form of textile effluent have caused serious pollution of aqueous environments. Here, we report a reduced graphene oxide (rGO) loaded with La2O2CO3 and ZnFe2O4 (ZF) nanoparticles (LGZF) as a highly efficient adsorbent, which was synthesized through a simple precipitation-hydrothermal method. The LGZF nanohybrids were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, magnetic property, zeta potential, and surface area measurements. The effectiveness of cationic dye sorption on the adsorbent was examined under several experimental variables such as contact time, initial dyes concentrations, solution pH, and solution temperature. A novel magnetic nanohybrid with interlayer crystal structures exhibited an enhanced sorption capacities for methylene blue (MB) and rhodamine B (RhB) from contaminated water in comparison to bare rGO and ZF, in which LGZF with a mass ratio of La to Fe of 1:1 showed the highest adsorption activity. The Langmuir and pseudo-second-order model fully explained experimental adsorption and kinetics data. LGZF displayed maximum adsorption capacity of 201 and 98.4 mg/g for MB and RhB, respectively. The MB and RhB adsorption onto LGZF involved a spontaneous and an endothermic chemisorption through a combination of π–π interaction, electrostatic interaction, surface complexation, and hydrogen bonding. Furthermore, feasibility on the removal of organic dyes and antibiotic in surface water was also evaluated. The enhanced adsorption performance of the LGZF nanohybrid can be attributed to the incorporation of the characteristic La and Zn elements on rGO, which promotes the synergistic effects between rGO, La2O2CO3, and ZF.
KW - Graphene
KW - Lanthanum
KW - Methylene blue
KW - Nanohybrid
KW - Rhodamine B
KW - Zinc ferrite
UR - http://www.scopus.com/inward/record.url?scp=85067566810&partnerID=8YFLogxK
U2 - 10.1016/j.ceramint.2019.06.173
DO - 10.1016/j.ceramint.2019.06.173
M3 - Article
AN - SCOPUS:85067566810
SN - 0272-8842
VL - 45
SP - 19247
EP - 19256
JO - Ceramics International
JF - Ceramics International
IS - 15
ER -