TY - JOUR

T1 - Higher rank subgroups in the class groups of imaginary function fields

AU - Lee, Yoonjin

AU - Pacelli, Allison M.

PY - 2006/9

Y1 - 2006/9

N2 - Let F be a finite field and T a transcendental element over F. In this paper, we construct, for integers m and n relatively prime to the characteristic of F (T), infinitely many imaginary function fields K of degree m over F (T) whose class groups contain subgroups isomorphic to (Z / n Z)m. This increases the previous rank of m - 1 found by the authors in [Y. Lee, A. Pacelli, Class groups of imaginary function fields: The inert case, Proc. Amer. Math. Soc. 133 (2005) 2883-2889].

AB - Let F be a finite field and T a transcendental element over F. In this paper, we construct, for integers m and n relatively prime to the characteristic of F (T), infinitely many imaginary function fields K of degree m over F (T) whose class groups contain subgroups isomorphic to (Z / n Z)m. This increases the previous rank of m - 1 found by the authors in [Y. Lee, A. Pacelli, Class groups of imaginary function fields: The inert case, Proc. Amer. Math. Soc. 133 (2005) 2883-2889].

UR - http://www.scopus.com/inward/record.url?scp=33745714285&partnerID=8YFLogxK

U2 - 10.1016/j.jpaa.2005.09.001

DO - 10.1016/j.jpaa.2005.09.001

M3 - Article

AN - SCOPUS:33745714285

VL - 207

SP - 51

EP - 62

JO - Journal of Pure and Applied Algebra

JF - Journal of Pure and Applied Algebra

SN - 0022-4049

IS - 1

ER -