High speed growth of MAPbBr3single crystals: Via low-temperature inverting solubility: Enhancement of mobility and trap density for photodetector applications

Yunae Cho, Hye Ri Jung, Yeon Soo Kim, Yejin Kim, Joohee Park, Seokhyun Yoon, Yousil Lee, Miyeon Cheon, Se Young Jeong, William Jo

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

There has been growing interest in organic-inorganic hybrid perovskites as a promising candidate for optoelectronic applications due to their superior physical properties. Despite this, most of the reported perovskite devices based on polycrystalline thin films suffer immensely from poor stability and high trap density owing to grain boundaries limiting their performance. Perovskite single crystal structures have been recently explored to construct stable devices and reduce the trap density compared to their thin-film counterparts. We present a novel method of growing sizable CH3NH3PbBr3 single crystals based on the high solubility characteristic of hybrid perovskites at low temperatures within inverse temperature crystallization. We compared both the crystallinity of perovskite single crystal structures and optoelectronic charge transport of single crystal photodetectors as a function of dissolution temperature. The performance of the photodetector fabricated with our large-scaled single crystal with high quality demonstrated low trap density, high mobility, and high photoresponse.

Original languageEnglish
Pages (from-to)8275-8282
Number of pages8
JournalNanoscale
Volume13
Issue number17
DOIs
StatePublished - 7 May 2021

Bibliographical note

Publisher Copyright:
© The Royal Society of Chemistry.

Fingerprint

Dive into the research topics of 'High speed growth of MAPbBr3single crystals: Via low-temperature inverting solubility: Enhancement of mobility and trap density for photodetector applications'. Together they form a unique fingerprint.

Cite this