Abstract
Machine learning (ML) has emerged as a novel tool for generating large-scale land surface data in recent years. ML can learn the relationship between input and target, e.g. meteorological variables and in-situ soil moisture, and then estimate soil moisture across space and time, independently of prior physics-based knowledge. Here we develop a high-resolution (0.1°) daily soil moisture dataset in Europe (SoMo.ml-EU) using Long Short-Term Memory trained with in-situ measurements. The resulting dataset covers three vertical layers and the period 2003–2020. Compared to its previous version with a lower spatial resolution (0.25°), it shows a closer agreement with independent in-situ data in terms of temporal variation, demonstrating the enhanced usefulness of in-situ observations when processed jointly with high-resolution meteorological data. Regional comparison with other gridded datasets also demonstrates the ability of SoMo.ml-EU in describing the variability of soil moisture, including drought conditions. As a result, our new dataset will benefit regional studies requiring high-resolution observation-based soil moisture, such as hydrological and agricultural analyses.
Original language | English |
---|---|
Article number | 701 |
Journal | Scientific Data |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2022 |
Bibliographical note
Publisher Copyright:© 2022, The Author(s).