TY - JOUR
T1 - High-Polarization-Sensitivity Polarimetric Organic Phototransistors Based on Highly Stretchable Semicrystalline Polymer Semiconductors
AU - Park, Gayeon
AU - Sung, Mingi
AU - Yoo, Hyeonjin
AU - Kim, Yejin
AU - Lee, Junghoon
AU - Lee, Byoung Hoon
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024/7/1
Y1 - 2024/7/1
N2 - Polarimetric phototransistors have attracted increasing interest due to their ability to recognize the polarization state of incident linearly polarized light. However, advances in their development have been hindered by the low polarization sensitivity that results from the modest polarization dichroic ratios (PDRs) of the photoactive materials. In this study, we present polarimetric organic phototransistors (P-OPTs) with a remarkably high polarization sensitivity exceeding 8.0. These P-OPTs are fabricated by transferring highly stretched (∼200%) thin films of a polymer semiconductor, poly(4-(5-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b’]dithiophen-2-yl)thiophen-2-yl)-5,6-difluoro-2-octyl-7-(thiophen-2-yl)-2H-benzo[d][1,2,3]triazole) (PCDTFBTA), which exhibits a high PDR of approximately 4.0. This improved polarization sensitivity ranks among the highest sensitivities reported for polarimetric phototransistors, demonstrating high photoresponsivity (R ≈ 500 A W-1), high external quantum efficiency (EQE ≈ 1000%), high photosensitivity (P ≈ 1.8 × 104), high specific detectivity (D* ≈ 5.9 × 1012 Jones), and short rise (τr ≈ 3.3 ms) and decay (τd ≈ 3.4 ms) times.
AB - Polarimetric phototransistors have attracted increasing interest due to their ability to recognize the polarization state of incident linearly polarized light. However, advances in their development have been hindered by the low polarization sensitivity that results from the modest polarization dichroic ratios (PDRs) of the photoactive materials. In this study, we present polarimetric organic phototransistors (P-OPTs) with a remarkably high polarization sensitivity exceeding 8.0. These P-OPTs are fabricated by transferring highly stretched (∼200%) thin films of a polymer semiconductor, poly(4-(5-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b’]dithiophen-2-yl)thiophen-2-yl)-5,6-difluoro-2-octyl-7-(thiophen-2-yl)-2H-benzo[d][1,2,3]triazole) (PCDTFBTA), which exhibits a high PDR of approximately 4.0. This improved polarization sensitivity ranks among the highest sensitivities reported for polarimetric phototransistors, demonstrating high photoresponsivity (R ≈ 500 A W-1), high external quantum efficiency (EQE ≈ 1000%), high photosensitivity (P ≈ 1.8 × 104), high specific detectivity (D* ≈ 5.9 × 1012 Jones), and short rise (τr ≈ 3.3 ms) and decay (τd ≈ 3.4 ms) times.
UR - http://www.scopus.com/inward/record.url?scp=85196754188&partnerID=8YFLogxK
U2 - 10.1021/acsmaterialslett.4c00719
DO - 10.1021/acsmaterialslett.4c00719
M3 - Article
AN - SCOPUS:85196754188
SN - 2639-4979
VL - 6
SP - 3071
EP - 3079
JO - ACS Materials Letters
JF - ACS Materials Letters
IS - 7
ER -