Abstract
To achieve substantial reductions in CO2 emissions, catalysts for the photoreduction of CO2 into value-added chemicals and fuels will most likely be at the heart of key renewable-energy technologies. Despite tremendous efforts, developing highly active and selective CO2 reduction photocatalysts remains a great challenge. Herein, a metal oxide heterostructure engineering strategy that enables the gas-phase, photocatalytic, heterogeneous hydrogenation of CO2 to CO with high performance metrics (i.e., the conversion rate of CO2 to CO reached as high as 1400 µmol g cat−1 h−1) is reported. The catalyst is comprised of indium oxide nanocrystals, In2O3− x(OH)y, nucleated and grown on the surface of niobium pentoxide (Nb2O5) nanorods. The heterostructure between In2O3− x(OH)y nanocrystals and the Nb2O5 nanorod support increases the concentration of oxygen vacancies and prolongs excited state (electron and hole) lifetimes. Together, these effects result in a dramatically improved photocatalytic performance compared to the isolated In2O3− x(OH)y material. The defect optimized heterostructure exhibits a 44-fold higher conversion rate than pristine In2O3− x(OH)y. It also exhibits selective conversion of CO2 to CO as well as long-term operational stability.
Original language | English |
---|---|
Article number | 1902170 |
Journal | Advanced Science |
Volume | 6 |
Issue number | 22 |
DOIs | |
State | Published - 1 Nov 2019 |
Bibliographical note
Publisher Copyright:© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Keywords
- CO conversion
- charge transfer
- heterostructures
- photocatalysts
- semiconductors