TY - JOUR
T1 - Heavy metal pollution in the soils of various land use types based on physicochemical characteristics
AU - Kim, Dong Su
AU - An, Kwang Guk
AU - Kim, Ki Hyun
PY - 2003
Y1 - 2003
N2 - In this study, soil samples were collected at eight different regional types of Seoul City and analyzed for their physicochemical properties. In addition, the distribution of heavy metal concentrations was analyzed using samples representing both the surface and deep soil layer. The physicochemical properties analyzed for those samples included parameters such as pH, moisture content, apparent (and true) density, pore ratio, solid content, conductivity, ionic strength, total dissolved solid (TDS), total organic carbon (TOC), and total phosphorus (TP). The contents of heavy metal components contained in plant leaves were also analyzed and compared with those measured from different soil layers. Contents of Cu and Cd were highest in the DH area among eight locations investigated and Pb was higher in the surface soil samples of the GS region than any other locations. According to physicochemical properties of the surface and deep soils, acidity was higher in the surface than deep soils. Depending on the selection of treatment method between strong and weak acids, the metal concentrations were larger by 3-5 times in the strong acid than the weak acid treatments. In addition, metals were higher in the deep than in the surface soil and relative metal contents of leaf samples closely resembled those of soil samples. Results of this study suggest that the physicochemical properties of soils determined from different regional types of Seoul area exhibited a close relationship with the land use types and environmental conditions surrounding each region.
AB - In this study, soil samples were collected at eight different regional types of Seoul City and analyzed for their physicochemical properties. In addition, the distribution of heavy metal concentrations was analyzed using samples representing both the surface and deep soil layer. The physicochemical properties analyzed for those samples included parameters such as pH, moisture content, apparent (and true) density, pore ratio, solid content, conductivity, ionic strength, total dissolved solid (TDS), total organic carbon (TOC), and total phosphorus (TP). The contents of heavy metal components contained in plant leaves were also analyzed and compared with those measured from different soil layers. Contents of Cu and Cd were highest in the DH area among eight locations investigated and Pb was higher in the surface soil samples of the GS region than any other locations. According to physicochemical properties of the surface and deep soils, acidity was higher in the surface than deep soils. Depending on the selection of treatment method between strong and weak acids, the metal concentrations were larger by 3-5 times in the strong acid than the weak acid treatments. In addition, metals were higher in the deep than in the surface soil and relative metal contents of leaf samples closely resembled those of soil samples. Results of this study suggest that the physicochemical properties of soils determined from different regional types of Seoul area exhibited a close relationship with the land use types and environmental conditions surrounding each region.
KW - Heavy metal content
KW - Land use
KW - Physicochemical properties
KW - Soil
UR - http://www.scopus.com/inward/record.url?scp=0037992706&partnerID=8YFLogxK
U2 - 10.1081/ESE-120018595
DO - 10.1081/ESE-120018595
M3 - Article
C2 - 12744436
AN - SCOPUS:0037992706
SN - 1093-4529
VL - 38
SP - 839
EP - 853
JO - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
JF - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
IS - 5
ER -