Head pose estimation using random forest and texture analysis

Min Joo Kang, Ha Yeon Lee, Je Won Kang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In this paper, we propose a new head pose estimation technique based on Random Forest (RF) and Multi-scale Block Local Block Pattern (MB-LBP) features. In the proposed technique we aim to learn a randomized tree with useful attributes to improve the estimation accuracy and tolerance of occlusions and illumination. Precisely, a number of MB-LBP feature spaces are generated from a face image, and random inputs and random features such as the MB-LBP scale parameter and the block coordinate in the pool are used for building the tree. Furthermore we develop a split function considering the properties of the uniform LBP, applied to each internal node of the tree to maximize the information gain at that node. The randomized trees put together in RF are used for the final decision in a Maximum-A-Posteriori criterion. Experimental results demonstrate that the proposed technique provides impressive performance in the head pose estimation in various conditions of illumination, poses, expressions, and facial occlusions.

Original languageEnglish
Title of host publication2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9789881476821
DOIs
StatePublished - 17 Jan 2017
Event2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016 - Jeju, Korea, Republic of
Duration: 13 Dec 201616 Dec 2016

Publication series

Name2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016

Conference

Conference2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
Country/TerritoryKorea, Republic of
CityJeju
Period13/12/1616/12/16

Bibliographical note

Publisher Copyright:
© 2016 Asia Pacific Signal and Information Processing Association.

Fingerprint

Dive into the research topics of 'Head pose estimation using random forest and texture analysis'. Together they form a unique fingerprint.

Cite this