TY - JOUR
T1 - Green Tea and Java Pepper Mixture Prevents Obesity by Increasing Energy Expenditure and Modulating Hepatic AMPK/MicroRNA-34a/370 Pathway in High-Fat Diet-Fed Rats
AU - Kim, Jibin
AU - Han, Dahye
AU - Lee, Mak Soon
AU - Lee, Jumi
AU - Kim, In Hwan
AU - Kim, Yangha
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/5
Y1 - 2023/5
N2 - This study was performed to evaluate the anti-obesity effects of green tea and java pepper mixture (GJ) on energy expenditure and understand the regulatory mechanisms of AMP-activated protein kinase (AMPK), microRNA (miR)-34a, and miR-370 pathways in the liver. Sprague–Dawley rats were divided into four groups depending on the following diets given for 14 weeks: normal chow diet (NR), 45% high-fat diet (HF), HF + 0.1% GJ (GJL), and HF + 0.2% GJ (GJH). The results revealed that GJ supplementation reduced body weight and hepatic fat accumulation, improved serum lipids, and increased energy expenditure. In the GJ-supplemented groups, the mRNA levels of genes related to fatty acid syntheses, such as a cluster of differentiation 36 (CD36), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD1) were downregulated, and mRNA levels of peroxisome proliferator-activated receptor alpha (PPARα), carnitine/palmitoyl-transferase 1 (CPT1), and uncoupling protein 2 (UCP2), which participate in fatty acid oxidation, were upregulated in the liver. GJ increased the AMPK activity and decreased the miR-34a and miR-370 expression. Therefore, GJ prevented obesity by increasing energy expenditure and regulating hepatic fatty acid synthesis and oxidation, suggesting that GJ is partially regulated through AMPK, miR-34a, and miR-370 pathways in the liver.
AB - This study was performed to evaluate the anti-obesity effects of green tea and java pepper mixture (GJ) on energy expenditure and understand the regulatory mechanisms of AMP-activated protein kinase (AMPK), microRNA (miR)-34a, and miR-370 pathways in the liver. Sprague–Dawley rats were divided into four groups depending on the following diets given for 14 weeks: normal chow diet (NR), 45% high-fat diet (HF), HF + 0.1% GJ (GJL), and HF + 0.2% GJ (GJH). The results revealed that GJ supplementation reduced body weight and hepatic fat accumulation, improved serum lipids, and increased energy expenditure. In the GJ-supplemented groups, the mRNA levels of genes related to fatty acid syntheses, such as a cluster of differentiation 36 (CD36), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD1) were downregulated, and mRNA levels of peroxisome proliferator-activated receptor alpha (PPARα), carnitine/palmitoyl-transferase 1 (CPT1), and uncoupling protein 2 (UCP2), which participate in fatty acid oxidation, were upregulated in the liver. GJ increased the AMPK activity and decreased the miR-34a and miR-370 expression. Therefore, GJ prevented obesity by increasing energy expenditure and regulating hepatic fatty acid synthesis and oxidation, suggesting that GJ is partially regulated through AMPK, miR-34a, and miR-370 pathways in the liver.
KW - AMPK
KW - energy expenditure
KW - green tea
KW - java pepper
KW - microRNA
KW - obesity
UR - http://www.scopus.com/inward/record.url?scp=85160589765&partnerID=8YFLogxK
U2 - 10.3390/antiox12051053
DO - 10.3390/antiox12051053
M3 - Article
AN - SCOPUS:85160589765
SN - 2076-3921
VL - 12
JO - Antioxidants
JF - Antioxidants
IS - 5
M1 - 1053
ER -