TY - JOUR
T1 - Glucose-based peritoneal dialysis solution suppresses adiponectin synthesis through oxidative stress in an experimental model of peritoneal dialysis
AU - Huh, Joo Young
AU - Seo, Eun Young
AU - Lee, Hi Bahl
AU - Ha, Hunjoo
PY - 2012/1
Y1 - 2012/1
N2 - Objective: Accumulation of visceral fat is one of the major risk factors for the development of cardiovascular disease in peritoneal dialysis (PD) patients. Adiponectin, an adipokine commonly regarded as a negative indicator of metabolic disease, is reported to be downregulated in its gene level in end-stage renal disease patients. Since excessive fat deposit is involved in increased reactive oxygen species (ROS), PD solution (PDS) may contribute to ROS production, resulting in dysregulation of adiponectin. In this study, we tested our hypothesis that oxidative stress induced by PDS may play a role in the regulation of adiponectin. Methods: Commercial PDS containing 3.86% glucose (20 - 30 mL) was administered to SD rats for 12 weeks with and without N-acetylcysteine (NAC; 10 mmol/L). ELISA was used to quantify adiponectin in plasma and spent dialysate. For in vitro studies, fully differentiated 3T3-L1 adipocytes and adipocytes isolated from abdominal fat were treated with a high glucose solution, PDS, and H 2O 2. Adiponectin levels in the conditioned media were measured by ELISA and immunoblot assays. The mRNA levels of adiponectin in mature adipocytes were examined using real-time RT-PCR. Results: The levels of adiponectin in plasma and spent dialysate were significantly downregulated by PDS and this effect was suppressed by NAC. In 3T3-L1 adipocytes, adiponectin secretion was inhibited by 50 mmol/L glucose, PDS diluted 2-fold, and H 2O 2 (200 μmol/L). In addition, H 2O 2 downregulated expression of adiponectin mRNA and secretion of adiponectin oligomer complexes. Conclusions: Our data suggest that ROS induced by con-ventional glucose-based PDS may contribute to pathophysi-ological changes in abdominal fat and downregulate adiponectin secreted from adipocytes during long-term PD.
AB - Objective: Accumulation of visceral fat is one of the major risk factors for the development of cardiovascular disease in peritoneal dialysis (PD) patients. Adiponectin, an adipokine commonly regarded as a negative indicator of metabolic disease, is reported to be downregulated in its gene level in end-stage renal disease patients. Since excessive fat deposit is involved in increased reactive oxygen species (ROS), PD solution (PDS) may contribute to ROS production, resulting in dysregulation of adiponectin. In this study, we tested our hypothesis that oxidative stress induced by PDS may play a role in the regulation of adiponectin. Methods: Commercial PDS containing 3.86% glucose (20 - 30 mL) was administered to SD rats for 12 weeks with and without N-acetylcysteine (NAC; 10 mmol/L). ELISA was used to quantify adiponectin in plasma and spent dialysate. For in vitro studies, fully differentiated 3T3-L1 adipocytes and adipocytes isolated from abdominal fat were treated with a high glucose solution, PDS, and H 2O 2. Adiponectin levels in the conditioned media were measured by ELISA and immunoblot assays. The mRNA levels of adiponectin in mature adipocytes were examined using real-time RT-PCR. Results: The levels of adiponectin in plasma and spent dialysate were significantly downregulated by PDS and this effect was suppressed by NAC. In 3T3-L1 adipocytes, adiponectin secretion was inhibited by 50 mmol/L glucose, PDS diluted 2-fold, and H 2O 2 (200 μmol/L). In addition, H 2O 2 downregulated expression of adiponectin mRNA and secretion of adiponectin oligomer complexes. Conclusions: Our data suggest that ROS induced by con-ventional glucose-based PDS may contribute to pathophysi-ological changes in abdominal fat and downregulate adiponectin secreted from adipocytes during long-term PD.
KW - Adiponectin
KW - N-acetylcysteine
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=84863020844&partnerID=8YFLogxK
U2 - 10.3747/pdi.2009.00228
DO - 10.3747/pdi.2009.00228
M3 - Article
C2 - 20798331
AN - SCOPUS:84863020844
SN - 0896-8608
VL - 32
SP - 20
EP - 28
JO - Peritoneal Dialysis International
JF - Peritoneal Dialysis International
IS - 1
ER -