Generalized Coverage for More Robust Low-Budget Active Learning

Wonho Bae, Junhyug Noh, Danica J. Sutherland

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The ProbCover method of Yehuda et al. is a well-motivated algorithm for active learning in low-budget regimes, which attempts to “cover” the data distribution with balls of a given radius at selected data points. We demonstrate, however, that the performance of this algorithm is extremely sensitive to the choice of this radius hyper-parameter, and that tuning it is quite difficult, with the original heuristic frequently failing. We thus introduce (and theoretically motivate) a generalized notion of “coverage,” including ProbCover’s objective as a special case, but also allowing smoother notions that are far more robust to hyper-parameter choice. We propose an efficient greedy method to optimize this coverage, generalizing ProbCover’s algorithm; due to its close connection to kernel herding, we call it “MaxHerding.” The objective can also be optimized non-greedily through a variant of k-medoids, clarifying the relationship to other low-budget active learning methods. In comprehensive experiments, MaxHerding surpasses existing active learning methods across multiple low-budget image classification benchmarks, and does so with less computational cost than most competitive methods.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
EditorsAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
PublisherSpringer Science and Business Media Deutschland GmbH
Pages318-334
Number of pages17
ISBN (Print)9783031730092
DOIs
StatePublished - 2025
Event18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: 29 Sep 20244 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15141 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period29/09/244/10/24

Bibliographical note

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

Keywords

  • Active learning
  • Kernel herding
  • Low budget
  • Set coverage

Fingerprint

Dive into the research topics of 'Generalized Coverage for More Robust Low-Budget Active Learning'. Together they form a unique fingerprint.

Cite this