General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation

Jonggeol Na, Bora Seo, Jeongnam Kim, Chan Woo Lee, Hyunjoo Lee, Yun Jeong Hwang, Byoung Koun Min, Dong Ki Lee, Hyung Suk Oh, Ung Lee

Research output: Contribution to journalArticlepeer-review

237 Scopus citations

Abstract

Electrochemical processes coupling carbon dioxide reduction reactions with organic oxidation reactions are promising techniques for producing clean chemicals and utilizing renewable energy. However, assessments of the economics of the coupling technology remain questionable due to diverse product combinations and significant process design variability. Here, we report a technoeconomic analysis of electrochemical carbon dioxide reduction reaction–organic oxidation reaction coproduction via conceptual process design and thereby propose potential economic combinations. We first develop a fully automated process synthesis framework to guide process simulations, which are then employed to predict the levelized costs of chemicals. We then identify the global sensitivity of current density, Faraday efficiency, and overpotential across 295 electrochemical coproduction processes to both understand and predict the levelized costs of chemicals at various technology levels. The analysis highlights the promise that coupling the carbon dioxide reduction reaction with the value-added organic oxidation reaction can secure significant economic feasibility.

Original languageEnglish
Article number5193
JournalNature Communications
Volume10
Issue number1
DOIs
StatePublished - 1 Dec 2019

Bibliographical note

Publisher Copyright:
© 2019, The Author(s).

Fingerprint

Dive into the research topics of 'General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation'. Together they form a unique fingerprint.

Cite this