TY - JOUR
T1 - Gas Sorption Properties of Isostructural Co-MOFs Containing Dipyridylporphyrin Linkers with Different Substituents at the 10,20-meso-Positions
AU - Choi, In Hwan
AU - Chae, Seung Hyun
AU - Huh, Seong
AU - Lee, Suk Joong
AU - Kim, Sung Jin
AU - Kim, Youngmee
N1 - Publisher Copyright:
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - Two new isostructural 3D dipyridylporphyrin-based MOFs, [Co(DpyDClP)]6·18H2O (I) and [Co(DpyDCNP)]6·18H2O (II), were prepared and structurally characterized by X-ray crystallography [DpyDClP: 5,15-di(4-pyridyl)-10,20-di(4-chlorophenyl)porphyrin; DpyDCNP: 5,15-di(4-pyridyl)-10,20-di(4-cyanophenyl)porphyrin]. They display exactly the same framework structures, notwithstanding different substituents at the 10,20-meso-positions of the dipyridylporphyrin backbones. Both substituents, -Cl for I and -CN for II, are completely exposed to the open space of solvent-free I and II. Therefore, the two MOFs have the same framework structures with distinct pore functionalities. Solvent-free I and II have solvent-accessible void volumes of 17.3 and 14.9%, respectively. The thermal properties of I and II are very similar, but the gas sorption properties strongly depend on the pore dimensions and functionalities. Compound I has a higher uptake of CO2 compared with that of II due to its larger void volume. Particularly, CO2 sorption isotherms at 196 K indicate dramatically different patterns depending on the meso-substituents. Whereas I shows S-shape isotherms for CO2 adsorption/desorption at 196 K, II does not. The sorption of N2, H2, and CH4 by the two MOFs was also investigated.
AB - Two new isostructural 3D dipyridylporphyrin-based MOFs, [Co(DpyDClP)]6·18H2O (I) and [Co(DpyDCNP)]6·18H2O (II), were prepared and structurally characterized by X-ray crystallography [DpyDClP: 5,15-di(4-pyridyl)-10,20-di(4-chlorophenyl)porphyrin; DpyDCNP: 5,15-di(4-pyridyl)-10,20-di(4-cyanophenyl)porphyrin]. They display exactly the same framework structures, notwithstanding different substituents at the 10,20-meso-positions of the dipyridylporphyrin backbones. Both substituents, -Cl for I and -CN for II, are completely exposed to the open space of solvent-free I and II. Therefore, the two MOFs have the same framework structures with distinct pore functionalities. Solvent-free I and II have solvent-accessible void volumes of 17.3 and 14.9%, respectively. The thermal properties of I and II are very similar, but the gas sorption properties strongly depend on the pore dimensions and functionalities. Compound I has a higher uptake of CO2 compared with that of II due to its larger void volume. Particularly, CO2 sorption isotherms at 196 K indicate dramatically different patterns depending on the meso-substituents. Whereas I shows S-shape isotherms for CO2 adsorption/desorption at 196 K, II does not. The sorption of N2, H2, and CH4 by the two MOFs was also investigated.
KW - Carbon dioxide
KW - Cobalt
KW - Gas sorption
KW - Metal-organic frameworks
KW - Porphyrins
UR - http://www.scopus.com/inward/record.url?scp=85027916905&partnerID=8YFLogxK
U2 - 10.1002/ejic.201500294
DO - 10.1002/ejic.201500294
M3 - Article
AN - SCOPUS:85027916905
SN - 1434-1948
VL - 2015
SP - 2989
EP - 2995
JO - European Journal of Inorganic Chemistry
JF - European Journal of Inorganic Chemistry
IS - 18
ER -