Abstract
The development of conductive metal-organic frameworks is challenging owing to poor electronic communication between metal clusters and the organic ligands that bridge them. One route to overcoming this bottleneck is to extend the inorganic dimensionality, while using the organic components to provide chemical functionality. Using density functional theory methods, we demonstrate how the properties of the alkaline-earth oxides SrO and BaO are transformed upon formation of porous solids with organic oxygen sources (acetate and trifluoroacetate). The electron affinity is significantly enhanced in the hybrid materials, while the ionization potential can be tuned over a large range with the polarity of the organic moiety. Furthermore, because of their high-vacuum fraction, these materials have dielectric properties suitable for low-κ applications.
Original language | English |
---|---|
Pages (from-to) | 7265-7269 |
Number of pages | 5 |
Journal | Inorganic Chemistry |
Volume | 55 |
Issue number | 15 |
DOIs | |
State | Published - 1 Aug 2016 |
Bibliographical note
Funding Information:M.D. and C.H.H. are supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Award DE-SC0006937). This work used the Extreme Science and Engineering Discovery Environment, which is supported by National Science Foundation Grant ACI-1053575 and benefited from access to ARCHER, the U.K.'s national highperformance computing service, funded by the EPSRC (Grant EP/L000202). A.W. is supported by the EPSRC (Grant EP/ M009580/1) and ERC (Grant 277757).
Publisher Copyright:
© 2016 American Chemical Society.