Abstract
Kesterite semiconductors, particularly Cu2ZnSnS4 (CZTS), have attracted attention for thin-film solar cells. We investigate the incorporation of Fe into CZTS to form the Cu2(Zn,Fe)SnS4 solid-solution for tuning the lattice spacing and band gap. First-principles calculations confirm a phase transition from kesterite (Zn-rich) to stannite (Fe-rich) at Fe/Zn ∼ 0.4. The exothermic enthalpy of mixing is consistent with the high solubility of Fe in the lattice. There is a linear band-gap bowing for each phase, which results in a blue-shift of photo-absorption for Fe-rich alloys due to the confinement of the conduction states. We propose compositions optimal for Si tandem cells.
Original language | English |
---|---|
Article number | 021912 |
Journal | Applied Physics Letters |
Volume | 104 |
Issue number | 2 |
DOIs | |
State | Published - 13 Jan 2014 |