TY - JOUR
T1 - Formation of polyaromatic hydrocarbon (PAH)-quinones during the gas phase reactions of PAHs with the OH radical in the atmosphere
AU - Lee, Ji Yi
AU - Lane, Douglas A.
AU - Kim, Yong Pyo
N1 - Publisher Copyright:
© CSIRO 2015.
PY - 2015
Y1 - 2015
N2 - Environmental context Atmospheric quinones present a potential toxic risk to human health because of their involvement in the generation of reactive oxygen species. Gas phase reactions of naphthalene and phenanthrene with the OH radical are investigated in a laboratory reaction chamber to provide a preliminary assessment of the importance of the atmospheric formation of quinones. Abstract In light of the potential toxicity of quinones (QNs) to human health, previous studies carried out measurement of QNs in ambient air samples and from motor vehicle emissions to understand the characteristics and the sources of QNs in the atmosphere. The major compounds observed in the ambient air samples comprised two and three benzene rings and included polyaromatic hydrocarbon (PAH)-quinones (PAH-QNs) such as 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), 9,10-phenanthrenequinone (9,10-PQ) and 9,10-anthraquinone (9,10-AQ). Although these PAH-QNs are found in vehicular emissions, they may also be formed by the photochemical reactions of gas phase PAHs with atmospheric oxidants. In this study, to allow an assessment of the importance of the atmospheric formation of PAH-QNs and to understand more clearly the sources of PAH-QNs in the atmosphere, the formation yields of PAH-QNs from the gas phase reactions of naphthalene and phenanthrene with the OH radical were observed in a laboratory reaction chamber. In addition, the phase distribution of the PAH-QNs was determined. For naphthoquinones (NQs), the formation yields of 1,4-NQ and 1,2-NQ were 1.5±0.4 and 5.1±2.7% respectively. The measured yields of PQs were 3.6±0.8% for 9,10-PQ and 2.7±1.1% for 1,4-PQ. From the measured yield data, the atmospheric formation of PAH-QNs was estimated and the importance of the atmospheric formation of PAH-QNs from the gas phase reaction of PAHs with the OH radical is discussed.
AB - Environmental context Atmospheric quinones present a potential toxic risk to human health because of their involvement in the generation of reactive oxygen species. Gas phase reactions of naphthalene and phenanthrene with the OH radical are investigated in a laboratory reaction chamber to provide a preliminary assessment of the importance of the atmospheric formation of quinones. Abstract In light of the potential toxicity of quinones (QNs) to human health, previous studies carried out measurement of QNs in ambient air samples and from motor vehicle emissions to understand the characteristics and the sources of QNs in the atmosphere. The major compounds observed in the ambient air samples comprised two and three benzene rings and included polyaromatic hydrocarbon (PAH)-quinones (PAH-QNs) such as 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), 9,10-phenanthrenequinone (9,10-PQ) and 9,10-anthraquinone (9,10-AQ). Although these PAH-QNs are found in vehicular emissions, they may also be formed by the photochemical reactions of gas phase PAHs with atmospheric oxidants. In this study, to allow an assessment of the importance of the atmospheric formation of PAH-QNs and to understand more clearly the sources of PAH-QNs in the atmosphere, the formation yields of PAH-QNs from the gas phase reactions of naphthalene and phenanthrene with the OH radical were observed in a laboratory reaction chamber. In addition, the phase distribution of the PAH-QNs was determined. For naphthoquinones (NQs), the formation yields of 1,4-NQ and 1,2-NQ were 1.5±0.4 and 5.1±2.7% respectively. The measured yields of PQs were 3.6±0.8% for 9,10-PQ and 2.7±1.1% for 1,4-PQ. From the measured yield data, the atmospheric formation of PAH-QNs was estimated and the importance of the atmospheric formation of PAH-QNs from the gas phase reaction of PAHs with the OH radical is discussed.
KW - Atmospheric formation
KW - formation yeild
KW - naphthalene
KW - phenanthrene
UR - http://www.scopus.com/inward/record.url?scp=84929610209&partnerID=8YFLogxK
U2 - 10.1071/EN14150
DO - 10.1071/EN14150
M3 - Article
AN - SCOPUS:84929610209
SN - 1448-2517
VL - 12
SP - 307
EP - 315
JO - Environmental Chemistry
JF - Environmental Chemistry
IS - 3
ER -