Abstract
Although a common reaction in anaerobic environments, the conversion of formate and water to bicarbonate and H2 (with a change in Gibbs free energy of δG° = +1.3kJmol-1) has not been considered energetic enough to support growth of microorganisms. Recently, experimental evidence for growth on formate was reported for syntrophic communities of Moorella sp. strain AMP and a hydrogen-consuming Methanothermobacter species and of Desulfovibrio sp. strain G11 and Methanobrevibacter arboriphilus strain AZ1. The basis of the sustainable growth of the formate-users is explained by H2 consumption by the methanogens, which lowers the H 2 partial pressure, thus making the pathway exergonic. However, it has not been shown that a single strain can grow on formate by catalysing its conversion to bicarbonate and H2. Here we report that several hyperthermophilic archaea belonging to the Thermococcus genus are capable of formate-oxidizing, H 2 -producing growth. The actual δG values for the formate metabolism are calculated to range between -8 and -20kJmol-1 under the physiological conditions where Thermococcus onnurineus strain NA1 are grown. Furthermore, we detected ATP synthesis in the presence of formate as a sole energy source. Gene expression profiling and disruption identified the gene cluster encoding formate hydrogen lyase, cation/proton antiporter and formate transporter, which were responsible for the growth of T. onnurineus NA1 on formate. This work shows formate-driven growth by a single microorganism with protons as the electron acceptor, and reports the biochemical basis of this ability.
Original language | English |
---|---|
Pages (from-to) | 352-355 |
Number of pages | 4 |
Journal | Nature |
Volume | 467 |
Issue number | 7313 |
DOIs | |
State | Published - Sep 2010 |