TY - JOUR
T1 - [Fe IV=O(TBC)(CH 3CN)] 2+
T2 - Comparative reactivity of iron(IV)-oxo species with constrained equatorial cyclam ligation
AU - Wilson, Samuel A.
AU - Chen, Junying
AU - Hong, Seungwoo
AU - Lee, Yong Min
AU - Clémancey, Martin
AU - Garcia-Serres, Ricardo
AU - Nomura, Takashi
AU - Ogura, Takashi
AU - Latour, Jean Marc
AU - Hedman, Britt
AU - Hodgson, Keith O.
AU - Nam, Wonwoo
AU - Solomon, Edward I.
PY - 2012/7/18
Y1 - 2012/7/18
N2 - [Fe IV=O(TBC)(CH 3CN)] 2+ (TBC = 1,4,8,11-tetrabenzyl-1,4,8,11-tetraazacyclotetradecane) is characterized, and its reactivity differences relative to [Fe IV=O(TMC)(CH 3CN)] 2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11- tetraazacyclotetradecane) are evaluated in hydrogen atom (H-atom) abstraction and oxo-transfer reactions. Structural differences are defined using X-ray absorption spectroscopy and correlated to reactivities using density functional theory. The S = 1 ground states are highly similar and result in large activation barriers (∼25 kcal/mol) due to steric interactions between the cyclam chelate and the substrate (e.g., ethylbenzene) associated with the equatorial π-attack required by this spin state. Conversely, H-atom abstraction reactivity on an S = 2 surface allows for a σ-attack with an axial substrate approach. This results in decreased steric interactions with the cyclam and a lower barrier (∼9 kcal/mol). For [Fe IV=O(TBC) (CH 3CN)] 2+, the S = 2 excited state in the reactant is lower in energy and therefore more accessible at the transition state due to a weaker ligand field associated with the steric interactions of the benzyl substituents with the trans-axial ligand. This study is further extended to the oxo-transfer reaction, which is a two-electron process requiring both σ- and π-electron transfer and thus a nonlinear transition state. In oxo-transfer, the S = 2 has a lower barrier due to sequential vs concerted (S = 1) two electron transfer which gives a high-spin ferric intermediate at the transition state. The [Fe IV=O(TBC)(CH 3CN)] 2+ complex is more distorted at the transition state, with the iron farther out of the equatorial plane due to the steric interaction of the benzyl groups with the trans-axial ligand. This allows for better orbital overlap with the substrate, a lower barrier, and an increased rate of oxo-transfer.
AB - [Fe IV=O(TBC)(CH 3CN)] 2+ (TBC = 1,4,8,11-tetrabenzyl-1,4,8,11-tetraazacyclotetradecane) is characterized, and its reactivity differences relative to [Fe IV=O(TMC)(CH 3CN)] 2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11- tetraazacyclotetradecane) are evaluated in hydrogen atom (H-atom) abstraction and oxo-transfer reactions. Structural differences are defined using X-ray absorption spectroscopy and correlated to reactivities using density functional theory. The S = 1 ground states are highly similar and result in large activation barriers (∼25 kcal/mol) due to steric interactions between the cyclam chelate and the substrate (e.g., ethylbenzene) associated with the equatorial π-attack required by this spin state. Conversely, H-atom abstraction reactivity on an S = 2 surface allows for a σ-attack with an axial substrate approach. This results in decreased steric interactions with the cyclam and a lower barrier (∼9 kcal/mol). For [Fe IV=O(TBC) (CH 3CN)] 2+, the S = 2 excited state in the reactant is lower in energy and therefore more accessible at the transition state due to a weaker ligand field associated with the steric interactions of the benzyl substituents with the trans-axial ligand. This study is further extended to the oxo-transfer reaction, which is a two-electron process requiring both σ- and π-electron transfer and thus a nonlinear transition state. In oxo-transfer, the S = 2 has a lower barrier due to sequential vs concerted (S = 1) two electron transfer which gives a high-spin ferric intermediate at the transition state. The [Fe IV=O(TBC)(CH 3CN)] 2+ complex is more distorted at the transition state, with the iron farther out of the equatorial plane due to the steric interaction of the benzyl groups with the trans-axial ligand. This allows for better orbital overlap with the substrate, a lower barrier, and an increased rate of oxo-transfer.
UR - http://www.scopus.com/inward/record.url?scp=84863946732&partnerID=8YFLogxK
U2 - 10.1021/ja3046298
DO - 10.1021/ja3046298
M3 - Article
C2 - 22708532
AN - SCOPUS:84863946732
SN - 0002-7863
VL - 134
SP - 11791
EP - 11806
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 28
ER -