Abstract
We present a descriptor, called fully convolutional self-similarity (FCSS), for dense semantic correspondence. To robustly match points among different instances within the same object class, we formulate FCSS using local self-similarity (LSS) within a fully convolutional network. In contrast to existing CNN-based descriptors, FCSS is inherently insensitive to intra-class appearance variations because of its LSS-based structure, while maintaining the precise localization ability of deep neural networks. The sampling patterns of local structure and the self-similarity measure are jointly learned within the proposed network in an end-to-end and multi-scale manner. As training data for semantic correspondence is rather limited, we propose to leverage object candidate priors provided in existing image datasets and also correspondence consistency between object pairs to enable weakly-supervised learning. Experiments demonstrate that FCSS outperforms conventional handcrafted descriptors and CNN-based descriptors on various benchmarks.
Original language | English |
---|---|
Title of host publication | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 616-625 |
Number of pages | 10 |
ISBN (Electronic) | 9781538604571 |
DOIs | |
State | Published - 6 Nov 2017 |
Event | 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States Duration: 21 Jul 2017 → 26 Jul 2017 |
Publication series
Name | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
---|---|
Volume | 2017-January |
Conference
Conference | 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 21/07/17 → 26/07/17 |
Bibliographical note
Publisher Copyright:© 2017 IEEE.