TY - JOUR
T1 - Factors Controlling the Chemoselectivity in the Oxidation of Olefins by Nonheme Manganese(IV)-Oxo Complexes
AU - Kim, Surin
AU - Cho, Kyung Bin
AU - Lee, Yong Min
AU - Chen, Junying
AU - Fukuzumi, Shunichi
AU - Nam, Wonwoo
N1 - Funding Information:
The authors acknowledge financial support from the NRF of Korea through the CRI (NRF-2012R1A3A2048842 to W.N.), GRL (NRF-2010-00353 to W.N.), and MSIP (NRF- 2013R1A1A2062737 to K.-B.C.) and from JSPS KAKENHI (No. 16H02268 to S.F.).
Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/8/24
Y1 - 2016/8/24
N2 - We report the oxidation of cyclic olefins, such as cyclohexene, cyclohexene-d10, and cyclooctene, by mononuclear nonheme manganese(IV)-oxo (MnIVO) and triflic acid (HOTf)-bound MnIVO complexes. In the oxidation of cyclohexene, the MnIVO complexes prefer the C - H bond activation to the C=C double bond epoxidation, whereas the C=C double bond epoxidation becomes a preferred reaction pathway in the cyclohexene oxidation by HOTf-bound MnIVO complexes. In contrast, the oxidation of cyclohexene-d10 and cyclooctene by the MnIVO complexes occurs predominantly via the C=C double bond epoxidation. This conclusion is drawn from the product analysis and kinetic studies of the olefin oxidation reactions, such as the epoxide versus allylic oxidation products, the formation of Mn(II) versus Mn(III) products, and the kinetic analyses. Overall, the experimental results suggest that the energy barrier of the C=C double bond epoxidation is very close to that of the allylic C - H bond activation in the oxidation of cyclic olefins by high-valent metal-oxo complexes. Thus, the preference of the reaction pathways is subject to changes upon small manipulation of the reaction environments, such as the supporting ligands and metal ions in metal-oxo species, the presence of HOTf (i.e., HOTf-bound MnIVO species), and the allylic C - H(D) bond dissociation energies of olefins. This is confirmed by DFT calculations in the oxidation of cyclohexene and cyclooctene, which show multiple pathways with similar rate-limiting energy barriers and depending on the allylic C - H bond dissociation energies. In addition, the possibility of excited state reactivity in the current system is confirmed for epoxidation reactions.
AB - We report the oxidation of cyclic olefins, such as cyclohexene, cyclohexene-d10, and cyclooctene, by mononuclear nonheme manganese(IV)-oxo (MnIVO) and triflic acid (HOTf)-bound MnIVO complexes. In the oxidation of cyclohexene, the MnIVO complexes prefer the C - H bond activation to the C=C double bond epoxidation, whereas the C=C double bond epoxidation becomes a preferred reaction pathway in the cyclohexene oxidation by HOTf-bound MnIVO complexes. In contrast, the oxidation of cyclohexene-d10 and cyclooctene by the MnIVO complexes occurs predominantly via the C=C double bond epoxidation. This conclusion is drawn from the product analysis and kinetic studies of the olefin oxidation reactions, such as the epoxide versus allylic oxidation products, the formation of Mn(II) versus Mn(III) products, and the kinetic analyses. Overall, the experimental results suggest that the energy barrier of the C=C double bond epoxidation is very close to that of the allylic C - H bond activation in the oxidation of cyclic olefins by high-valent metal-oxo complexes. Thus, the preference of the reaction pathways is subject to changes upon small manipulation of the reaction environments, such as the supporting ligands and metal ions in metal-oxo species, the presence of HOTf (i.e., HOTf-bound MnIVO species), and the allylic C - H(D) bond dissociation energies of olefins. This is confirmed by DFT calculations in the oxidation of cyclohexene and cyclooctene, which show multiple pathways with similar rate-limiting energy barriers and depending on the allylic C - H bond dissociation energies. In addition, the possibility of excited state reactivity in the current system is confirmed for epoxidation reactions.
UR - http://www.scopus.com/inward/record.url?scp=84983666611&partnerID=8YFLogxK
U2 - 10.1021/jacs.6b06252
DO - 10.1021/jacs.6b06252
M3 - Article
AN - SCOPUS:84983666611
SN - 0002-7863
VL - 138
SP - 10654
EP - 10663
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 33
ER -