TY - JOUR
T1 - Expression of the gas-transporting proteins, Rh B glycoprotein and Rh C glycoprotein, in the murine lung
AU - Han, Ki Hwan
AU - Mekala, Kavya
AU - Babida, Venetia
AU - Kim, Hye Young
AU - Handlogten, Mary E.
AU - Verlander, Jill W.
AU - Weiner, I. David
PY - 2009/7
Y1 - 2009/7
N2 - A family of gas-transporting proteins, the Mep/Amt/Rh glycoprotein family, has been identified recently. These are integral membrane proteins, are widely expressed in sites of gas transport, and are known to transport the gaseous molecule, NH3, and recent evidence indicates they can transport CO2. Because the mammalian lung is a critical site for gas transport, the current studies examine the expression of the nonerythroid members of this extended family, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), in the normal mouse lung. Real-time RT-PCR and immunoblot analysis demonstrated both Rhbg and Rhcg mRNA and protein expression, respectively. Immunohistochemistry demonstrated both Rhbg and Rhcg were expressed in bronchial and bronchiolar epithelial cells. Rhbg was expressed by Clara cells, specifically, whereas all bronchial/bronchiolar epithelial cells, with the exception of goblet cells, expressed Rhcg. Rhbg expression was basolateral, whereas Rhcg exhibited apical and intracellular immunolabel, polarized expression similar to that observed in Rhbg- and Rhcg-expressing epithelial cells in other organs. There was no detectable expression of either Rhbg or Rhcg in alveolar endothelial or epithelial cells, in pneumocytes or in vascular tissue. In vitro studies using cultured bronchial epithelial cells confirm Rhbg and Rhcg expression, demonstrate that saturable, not diffusive, transport is the primary mechanism of ammonia/methylammonia transport, and show that the saturable transport mechanism has kinetics similar to those demonstrated previously for Rhbg and Rhcg. These findings suggest Rhbg and Rhcg may contribute to bronchial epithelial cell ammonia metabolism and suggest that they do not contribute to pulmonary CO2 transport.
AB - A family of gas-transporting proteins, the Mep/Amt/Rh glycoprotein family, has been identified recently. These are integral membrane proteins, are widely expressed in sites of gas transport, and are known to transport the gaseous molecule, NH3, and recent evidence indicates they can transport CO2. Because the mammalian lung is a critical site for gas transport, the current studies examine the expression of the nonerythroid members of this extended family, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), in the normal mouse lung. Real-time RT-PCR and immunoblot analysis demonstrated both Rhbg and Rhcg mRNA and protein expression, respectively. Immunohistochemistry demonstrated both Rhbg and Rhcg were expressed in bronchial and bronchiolar epithelial cells. Rhbg was expressed by Clara cells, specifically, whereas all bronchial/bronchiolar epithelial cells, with the exception of goblet cells, expressed Rhcg. Rhbg expression was basolateral, whereas Rhcg exhibited apical and intracellular immunolabel, polarized expression similar to that observed in Rhbg- and Rhcg-expressing epithelial cells in other organs. There was no detectable expression of either Rhbg or Rhcg in alveolar endothelial or epithelial cells, in pneumocytes or in vascular tissue. In vitro studies using cultured bronchial epithelial cells confirm Rhbg and Rhcg expression, demonstrate that saturable, not diffusive, transport is the primary mechanism of ammonia/methylammonia transport, and show that the saturable transport mechanism has kinetics similar to those demonstrated previously for Rhbg and Rhcg. These findings suggest Rhbg and Rhcg may contribute to bronchial epithelial cell ammonia metabolism and suggest that they do not contribute to pulmonary CO2 transport.
KW - Ammonia
KW - CO
KW - Transport
UR - http://www.scopus.com/inward/record.url?scp=67650079603&partnerID=8YFLogxK
U2 - 10.1152/ajplung.90524.2008
DO - 10.1152/ajplung.90524.2008
M3 - Article
C2 - 19429772
AN - SCOPUS:67650079603
SN - 1040-0605
VL - 297
SP - L153-L163
JO - American Journal of Physiology - Lung Cellular and Molecular Physiology
JF - American Journal of Physiology - Lung Cellular and Molecular Physiology
IS - 1
ER -