Abstract
The curry compound, curcumin exerts multiple health-promotive functions; however, its poor solubility and stability limits its biological applications. In this study, we illuminate intermolecular binding mechanisms in the nano-sized complex of curcumin with silkworm protein, 30Kc19. The intrinsic fluorescence of 30Kc19 was gradually quenched by the increase of curcumin concentrations, which demonstrates molecule-molecule complexations mediated by the fluorophore amino acid residues (Tyr, Trp) in the protein. The fluorescence quenching showed that the binding occurred at 1:1 molar ratio with binding constant of 3.28 × 104 M-1. The results from scanning electron microscopy and dynamic light scattering indicate that the complexes were formed with cubicle shapes and sizes of 200–250 nm at pH 8.0 (zeta-potential < −20 mV). Along with Fourier transform infrared analysis, computational studies of protein-ligand docking simulation suggest a mechanism that curcumin and 30Kc19 forms complexes through specific amino acid residues (Trp174, Trp180, and Trp225) with minimum binding distance (4 Å). The complexation of curcumin with 30Kc19 protein effectively suppressed the degradation of curcumin over 10 h and improved its antioxidant activity up to 30%. These findings suggest an application of 30Kc19 for the delivery of waterinsoluble bioactive medicines.
Original language | English |
---|---|
Pages (from-to) | 605-616 |
Number of pages | 12 |
Journal | Biotechnology and Bioprocess Engineering |
Volume | 23 |
Issue number | 5 |
DOIs | |
State | Published - 1 Sep 2018 |
Bibliographical note
Publisher Copyright:© 2018, The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature.
Keywords
- 30Kc19 protein
- curcumin
- protein-ligand complex
- stability