Evaluation of Removal Mechanisms in a Graphene Oxide-Coated Ceramic Ultrafiltration Membrane for Retention of Natural Organic Matter, Pharmaceuticals, and Inorganic Salts

Kyoung Hoon Chu, Mahdi Fathizadeh, Miao Yu, Joseph R.V. Flora, Am Jang, Min Jang, Chang Min Park, Sung Soo Yoo, Namguk Her, Yeomin Yoon

Research output: Contribution to journalArticlepeer-review

84 Scopus citations

Abstract

Functionalized graphene oxide (GO), derived from pure graphite via the modified Hummer method, was used to modify commercially available ceramic ultrafiltration membranes using the vacuum method. The modified ceramic membrane functionalized with GO (ceramicGO) was characterized using a variety of analysis techniques and exhibited higher hydrophilicity and increased negative charge compared with the pristine ceramic membrane. Although the pure water permeability of the ceramicGO membrane (14.4-58.6 L/m2 h/bar) was slightly lower than that of the pristine membrane (25.1-62.7 L/m2 h/bar), the removal efficiencies associated with hydrophobic attraction and charge effects were improved significantly after GO coating. Additionally, solute transport in the GO nanosheets of the ceramicGO membrane played a vital role in the retention of target compounds: natural organic matter (NOM; humic acid and tannic acid), pharmaceuticals (ibuprofen and sulfamethoxazole), and inorganic salts (NaCl, Na2SO4, CaCl2, and CaSO4). While the retention efficiencies of NOM, pharmaceuticals, and inorganic salts in the pristine membrane were 74.6%, 15.3%, and 2.9%, respectively, these increased to 93.5%, 51.0%, and 31.4% for the ceramicGO membrane. Consequently, the improved removal mechanisms of the membrane modified with functionalized GO nanosheets can provide efficient retention for water treatment under suboptimal environmental conditions of pH and ionic strength.

Original languageEnglish
Pages (from-to)40369-40377
Number of pages9
JournalACS Applied Materials and Interfaces
Volume9
Issue number46
DOIs
StatePublished - 22 Nov 2017

Bibliographical note

Publisher Copyright:
© 2017 American Chemical Society.

Keywords

  • ceramic ultrafiltration membrane
  • inorganic salts
  • natural organic matters
  • pharmaceuticals
  • removal mechanisms

Fingerprint

Dive into the research topics of 'Evaluation of Removal Mechanisms in a Graphene Oxide-Coated Ceramic Ultrafiltration Membrane for Retention of Natural Organic Matter, Pharmaceuticals, and Inorganic Salts'. Together they form a unique fingerprint.

Cite this