TY - JOUR
T1 - Evaluation of Removal Mechanisms in a Graphene Oxide-Coated Ceramic Ultrafiltration Membrane for Retention of Natural Organic Matter, Pharmaceuticals, and Inorganic Salts
AU - Chu, Kyoung Hoon
AU - Fathizadeh, Mahdi
AU - Yu, Miao
AU - Flora, Joseph R.V.
AU - Jang, Am
AU - Jang, Min
AU - Park, Chang Min
AU - Yoo, Sung Soo
AU - Her, Namguk
AU - Yoon, Yeomin
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/11/22
Y1 - 2017/11/22
N2 - Functionalized graphene oxide (GO), derived from pure graphite via the modified Hummer method, was used to modify commercially available ceramic ultrafiltration membranes using the vacuum method. The modified ceramic membrane functionalized with GO (ceramicGO) was characterized using a variety of analysis techniques and exhibited higher hydrophilicity and increased negative charge compared with the pristine ceramic membrane. Although the pure water permeability of the ceramicGO membrane (14.4-58.6 L/m2 h/bar) was slightly lower than that of the pristine membrane (25.1-62.7 L/m2 h/bar), the removal efficiencies associated with hydrophobic attraction and charge effects were improved significantly after GO coating. Additionally, solute transport in the GO nanosheets of the ceramicGO membrane played a vital role in the retention of target compounds: natural organic matter (NOM; humic acid and tannic acid), pharmaceuticals (ibuprofen and sulfamethoxazole), and inorganic salts (NaCl, Na2SO4, CaCl2, and CaSO4). While the retention efficiencies of NOM, pharmaceuticals, and inorganic salts in the pristine membrane were 74.6%, 15.3%, and 2.9%, respectively, these increased to 93.5%, 51.0%, and 31.4% for the ceramicGO membrane. Consequently, the improved removal mechanisms of the membrane modified with functionalized GO nanosheets can provide efficient retention for water treatment under suboptimal environmental conditions of pH and ionic strength.
AB - Functionalized graphene oxide (GO), derived from pure graphite via the modified Hummer method, was used to modify commercially available ceramic ultrafiltration membranes using the vacuum method. The modified ceramic membrane functionalized with GO (ceramicGO) was characterized using a variety of analysis techniques and exhibited higher hydrophilicity and increased negative charge compared with the pristine ceramic membrane. Although the pure water permeability of the ceramicGO membrane (14.4-58.6 L/m2 h/bar) was slightly lower than that of the pristine membrane (25.1-62.7 L/m2 h/bar), the removal efficiencies associated with hydrophobic attraction and charge effects were improved significantly after GO coating. Additionally, solute transport in the GO nanosheets of the ceramicGO membrane played a vital role in the retention of target compounds: natural organic matter (NOM; humic acid and tannic acid), pharmaceuticals (ibuprofen and sulfamethoxazole), and inorganic salts (NaCl, Na2SO4, CaCl2, and CaSO4). While the retention efficiencies of NOM, pharmaceuticals, and inorganic salts in the pristine membrane were 74.6%, 15.3%, and 2.9%, respectively, these increased to 93.5%, 51.0%, and 31.4% for the ceramicGO membrane. Consequently, the improved removal mechanisms of the membrane modified with functionalized GO nanosheets can provide efficient retention for water treatment under suboptimal environmental conditions of pH and ionic strength.
KW - ceramic ultrafiltration membrane
KW - inorganic salts
KW - natural organic matters
KW - pharmaceuticals
KW - removal mechanisms
UR - http://www.scopus.com/inward/record.url?scp=85035044236&partnerID=8YFLogxK
U2 - 10.1021/acsami.7b14217
DO - 10.1021/acsami.7b14217
M3 - Article
C2 - 29111662
AN - SCOPUS:85035044236
SN - 1944-8244
VL - 9
SP - 40369
EP - 40377
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 46
ER -