Estimation of posterior density functions from a posterior sample

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

The joint posterior density function of parameters and marginal posterior density functions of subsets of parameters are key quantities in Bayesian inference. Even when the posterior densities are unknown, there are many cases where Markov Chain Monte Carlo methods can generate samples from the joint posterior distribution. This paper proposes a simple and efficient method of estimating the posterior density functions at various points simultaneously by using a posterior sample.

Original languageEnglish
Pages (from-to)411-427
Number of pages17
JournalComputational Statistics and Data Analysis
Volume29
Issue number4
DOIs
StatePublished - 28 Feb 1999

Keywords

  • Bayesian analysis
  • Density estimation
  • Markov Chain Monte Carlo
  • Simulation

Fingerprint

Dive into the research topics of 'Estimation of posterior density functions from a posterior sample'. Together they form a unique fingerprint.

Cite this